期刊文献+

基于遗传规划的GSBAR学习算法 被引量:1

GSBAR learning algorithm based on genetic programming
原文传递
导出
摘要 基于相似关系的广义近似推理方法(GSBAR)需要一个能根据案例数据来确定其函数参数的算法,即GSBAR学习算法。提出了基于遗传规划的GSBAR学习算法,论述了GSBAR学习算法的定义、学习算法任务的简化以及学习算法的组成部分和基本步骤。学习算法的运算实例表明:GSBAR学习算法能够以较大概率搜索到合适的函数参数。GSBAR学习算法提供了根据案例数据来确定GSBAR方法中关键函数的能力,从而使得GSBAR方法具有更好的适应性。 The general similarity-based approximate reasoning method (GSBAR) needs a learning algorithm to find its functional parameters based on various cases. This paper describes a GSBAR learning algorithm based on genetic programming. The definition of this algorithm, simplification of the learning task, main components, and steps were presented. An illustrative example shows that the GSBAR learning algorithm most likely finds the optimal result. The function searching ability of the GSBAR learning algorithm makes the GSBAR algorithm more adaptive to a variety of situations.
作者 朱涛 王永县
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第12期1631-1634,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金重点项目(79930070) 清华大学经济管理学院软科学实验室资助项目
关键词 遗传规划 GSBAR学习算法 经济数学方法 相似关系 近似推理 economics mathematics similarity relations approximate reasoning learning algorithm genetic programming
  • 相关文献

参考文献6

  • 1Yeung D S, Tsang E C C. A comparative study on similarity-based fuzzy reasoning methods [J]. IEEE Trans Systems, Man, and Cybernetics, Part B: Cybernetics, 1997,27(2): 216 - 227.
  • 2Chun M-G. A similarity-based bi-directional approximate reasoning method for decision-making systems [J]. Fuzzy Sets and Systems, 2001, 117(1): 269 - 278.
  • 3王永县,朱涛,李飞.基于相似关系的广义近似推理方法[J].清华大学学报(自然科学版),2002,42(10):1285-1288. 被引量:5
  • 4Koza J R. Genetic Programming 1: On the Programming of Computers by Means of Natural Selection [M]. Cambridge:MIT Press, 1992.
  • 5Koza J R. Genetic Programming 2: Automatic Discovery of Reusable Programs [M]. Cambridge: MIT Press, 1994.
  • 6Poli R, Langdon W B. A new schema theory for genetic programming with one-point crossover and point mutation [A]. Proc 2nd Annual Conf Genetic Programming [C].Stanford University: Morgan Kaufmann, 1997. 278- 285.

二级参考文献11

  • 1[1]Turksen I B, Zhong Z. An approximate analogical reasoning approach based on similarity measures [J]. IEEE Trans Syst, Man, and Cybernetics, 1988, 18(6): 1049-1056.
  • 2[2]Turksen I B, Zhong Z. An approximate analogical reasoning scheme based on similarity measures and interval valued fuzzy sets [J]. Fuzzy Sets and Systems, 1990, 34(3): 323-346.
  • 3[3]Yeung D S, Tsang E C C. Improved fuzzy knowledge representation and rule evaluation using fuzzy Petri nets and degree of subsethood [J]. Intell Syst, 1994, 9(12): 1083-1100.
  • 4[4]Yeung D S, Tsang E C C. A Comparative study on similarity-based fuzzy reasoning methods [J]. IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, 1997, 27(2): 216-227.
  • 5[5]Bien Z, Chun M-G. An inference network for bi-directional approximate reasoning based on equality measure [J]. IEEE Trans Fuzzy Systems, 1994, 2(2): 177-180.
  • 6[6]Chun M-G. A similarity-based bi-directional approximate reasoning method for decision-making systems [J]. Fuzzy Sets and Systems, 2001, 117(1): 269-278.
  • 7[7]Chen S M. A new approach to handling fuzzy decision-making problems [J]. IEEE Trans Syst, Man, and Cybernetics, 1988, 18(6): 1012-1016.
  • 8[8]Chen S M. A weighted fuzzy reasoning algorithm for medical diagnosis [J]. Decision Support Systems, 1994, 11: 37-43.
  • 9[9]Zadeh L A. Similarity relations and fuzzy orderings [J]. Info Sci, 1971, 3: 177-200.
  • 10[10]Sudkamp T. Similarity, interpolation, and fuzzy rule construction [J]. Fuzzy Sets and Systems, 1994, 58(1): 73-86.

共引文献4

同被引文献9

  • 1马震岳,陈维江,董毓新.Genetic Regression Model for Dam Safety Monitoring[J].Transactions of Tianjin University,2002,8(3):196-199. 被引量:2
  • 2黄声享,尹晖,蒋征.变形监测数据处理[M].武汉:武汉大学出版社,2002.20-25.
  • 3Man leung Wong,Kwong Sak Leung. Data Mining Using Grammar Based Genetic Programming And Applications [M]. New York: Kluwer Academic Publishers, 2002.
  • 4Koza J R. Genetic Programming : On the Programming of Computers by Means of Natural Selection[M]. Cambridge ,MA:MIT Press,1992.
  • 5Wendy Ashlock. Using Very Small Population Sizes in Genetic Programming[A]. In 2006 IEEE World Congress on Computational Intelligence [C]. IEEE Congress on Evolutionary Computation, 2006: 1 023-1 030
  • 6Marco Tomassini, Luthi L. The Structure of the Genetic Programming Collaboration Network[J]. Genetic Programming and Evolvable Machines, 2007:97-103
  • 7林丹,寇纪淞,李敏强.遗传规划研究与应用中的若干问题[J].管理科学学报,1999,2(4):62-69. 被引量:10
  • 8王小平,曹立明,顾绍元.遗传程序设计及其在符号回归问题中的应用[J].同济大学学报(自然科学版),2001,29(10):1200-1204. 被引量:12
  • 9张宗华,赵霖,张伟.遗传程序设计理论及其应用综述[J].计算机工程与应用,2003,39(13):94-97. 被引量:9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部