期刊文献+

多孔介质中可压可溶驱动问题的Potempa-有限元方法

Potempa-finite element methods for compressible miscible displacement in porous media
下载PDF
导出
摘要 考虑Potempa-有限元方法求解多孔介质中可压缩可混溶驱动问题 ,用Potempa格式求解饱和度方程 ,用标准Galerkin程序求解压力方程 ,得到L2 模收敛性误差估计 ,数值试验证实该计算格式的有效性 . Potempa-finite element methods are considered for computing the compressible miscible displacement in porous media. The concentration equation is treated by Potempa's scheme, while the pressure equation is treated by a standard Galerkin procedure. A L2 error estimate is derived. A numerical experiment is given.
作者 王焕
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2003年第5期23-28,共6页 Journal of Shandong University(Natural Science)
基金 国家重点基础研究发展规划项目 (G19990 3 0 80 3 ) 国家自然科学基金资助项目 ( 10 2 710 66 19972 0 2 3 )
关键词 Potempa-有限元方法 收敛性分析 L^2模误差估计 Potempa-finite element methods convergence analysis L2 error estimate
  • 相关文献

参考文献1

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部