期刊文献+

FLOW PROPERTIES OF COHESIVE NANOPOWDERS

FLOW PROPERTIES OF COHESIVE NANOPOWDERS
原文传递
导出
摘要 The fundamentals of cohesive powder consolidation and flow behaviour using a reasonable combination of particle and continuum mechanics are explained. By means of the model 搒tiff particles with soft contacts? the influ-ence of elastic-plastic repulsion in particle contacts is demonstrated. With this as the physical basis, the stationary yield locus, instantaneous yield loci and consolidation loci, flow function and compression function are presented. The flow properties of a very cohesive titania nanopowder (dS=200 nm) are shown. These models are used to evaluate shear cell test results as constitutive functions for computer aided apparatus design for reliable powder flow. The fundamentals of cohesive powder consolidation and flow behaviour using a reasonable combination of particle and continuum mechanics are explained. By means of the model 搒tiff particles with soft contacts? the influ-ence of elastic-plastic repulsion in particle contacts is demonstrated. With this as the physical basis, the stationary yield locus, instantaneous yield loci and consolidation loci, flow function and compression function are presented. The flow properties of a very cohesive titania nanopowder (dS=200 nm) are shown. These models are used to evaluate shear cell test results as constitutive functions for computer aided apparatus design for reliable powder flow.
作者 Jgen Tomas
出处 《China Particuology》 SCIE EI CAS CSCD 2003年第6期231-241,共11页
关键词 particle mechanics adhesion force van der Waals forces constitutive models cohesive powder flow properties particle mechanics, adhesion force, van der Waals forces, constitutive models, cohesive powder, flow properties
  • 相关文献

参考文献43

  • 1[1]Antoniuk,S.& Tomas,J.(2003).Mechanische Bruchprozesse in Agglomeraten bei der Druckbeanspruchung.Maschinenbau und Technik des 21.Jahrh.,Sevastopol.
  • 2[2]Dahneke,B.(1972).The influence of flattening on the adhesion of particles.J.Colloid Interface Sci.,40,1-13.
  • 3[3]Derjaguin,B.V.,Muller,V.M.& Toporov,U.P.(1975).Effect of contact deformations on the adhesion of particles.J.Colloid Interface Sci.,53,314-326.
  • 4[4]Ecke,S.& Butt,H.-J.(2001).Friction between individual microcontacts.J.Colloid Interface Sci.,244,432-435.
  • 5[5]Grossmann,L.,Tomas,J.& Cz(o)ke,B.(2003).Compressibility and flow properties of a cohesive limestone powder in a medium pressure range.In Kalman,H.& Gyenis,J.(Eds.),The4th Conference for Conveying and Handling of Particulate Solids (pp.4.20-4.25),Budapest.
  • 6[6]Haack,A.& Tomas,J.(2003).Untersuchungen zum D(a)mpfungsverhalten hochdisperser koh(a)siver Pulver.Chem.-Ing.-Technik,75,submitted.
  • 7[7]Hertz,H.(1882).(U)ber die Berührung fester elastischer K(o)rper.J.reine u.angew.Math.,92,156-171.
  • 8[8]Huber,M.T.(1904).Zur Theorie der Berührung fester elastischer K(o)rper.Annal.Physik,14,153-163.
  • 9[9]Israelachvili,J.N.(1992).Intermolecular and Surface Forces.London:Academic Press.
  • 10[10]Jenike,A.W.(1964).Storage and flow of solids.Engng.Exp.Stat.Bull.,No.123,Univ.Utah.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部