期刊文献+

实闭域计算的一个实用有效方法

Practical and efficient method for computations over real closed fields
下载PDF
导出
摘要 在计算实践中 ,处理大型多项式时 ,由于复杂性原因 ,实闭域一阶理论判定方法实际上无效 .因此寻找求解多项式方程与不等式组的有效方法 (未必是判定方法 )是符号计算中的重要问题 .为解决这一问题 ,将Budan Fourier定理与Ritt Wu方法结合提出确定多项式方程实根和证明不等式的简单有效方法 .尽管该方法不完备 。 The conventional methods do not work in practice when dealing with large polynomials because of their high complexity. Thus, finding practical and efficient methods (not necessary to be decision method) to solve systems of large polynomial equations and inequalities is very important in symbolic computation. Ritt Wu's method was combined with Budan Fourier's theorem to do such task. Though incomplete for the problems in general, the proposed method was found to be computationally more efficient in practice on many examples.
作者 马世龙
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2003年第10期847-851,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家重点基础研究发展规划资助项目 (G19990 3 2 70 1)
关键词 符号计算 多项式方程 多项式不等式 symbolic computation polynomial equation polynomial inequality
  • 相关文献

参考文献8

  • 1Rabin M O. Decidable theories [A]. In: Barwise J ed. Handbook of Mathematical Logic[C]. Amsterdam:Horth-Holland Publishing Company,1977. 595~630
  • 2Wu Wen-tsüun. On zeros of algebraic equations--an application of Ritt's principle [J]. Kexue Tongbao, 1986,31(1):1~5
  • 3Buchberger B. Grbner bases: an algorithmic method in polynomial ideal theory [A]. In: Bose N K ed. Recent Trends in Multidimensional Systems Theory[C]. Boston: D Reidel Publ Comp, 1985
  • 4Ning S, Ma S, Kewt K H, et al. A cubic system with eight small amplitude limit cycles [J]. Applied Mathematics Letters, 1994,7(4):23~27
  • 5Ma S, Ning S. Deriving some new conditions on the existence of eight limit cycles for a cubic system [J]. Computers & Mathematics with Applications, 1997,33(7): 59~84
  • 6Ma S, Ning S. Practically solving some problems expressed in the first order theory of the real closed field [J]. International Journal of Computer Mathematics, 1998,69(3-4): 265~282
  • 7Lu Z, Ma S. Centers, foci and limit cycles for polynomial differential systems [A]. In: Wang D, Gao X ed. Mathematics Mechanization and Applications [C]. London:Academic Press,2000, 365~387
  • 8Demidovich B P, Maron I A. Computational mathematics [M]. Translated from the Russion by George Yankovsky, Moscow: Mir Publishers, 1981

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部