期刊文献+

使用二次和几何不等式导出交互熵问题(英文)

MINIMUM DISCRIMINATION INFORMATION PROBLEMS VIA QUADRATICAL AND ARITHMETIC GEOMETRIC INEQUALITIES
下载PDF
导出
摘要 考虑带二次约束和交互熵约束的最小二次规划和交互熵问题。基于二次和几何不等式的理论与性质。导出了上述两个规划原问题的对偶规划。进一步,由不等式中等式成立时的性质建立了两个原始-对偶规划的对偶定理和Kuhn-Tucker条件。 Considers quadratic program problem and minimum discrimination information (MDI) problem with a set of quadratical inequality constraints and entropy inequality constraints of the density. The dual programs of two problems are derived by employing two simple inequalities,namely quadratic inequality and arithmetic geometric inequality. Furthermore,the duality theorems and related Kuhn-Tucker conditions for the two pairs of the prime-dual programs are also established by the properties of two inequalities if and only if the equalities hold.
作者 朱德通
机构地区 上海师范大学
出处 《广西师范大学学报(自然科学版)》 CAS 2003年第4期53-60,共8页 Journal of Guangxi Normal University:Natural Science Edition
基金 National Science Foundation Grant of China(10071050) Science Foundation Grant of Shanghai Technical Sciences Committee(02ZA14070) Science Foundation Grant of Shanghai Education Committee(02DK06)
关键词 二次不等式 几何不等式 KUHN-TUCKER条件 二次规划 交互熵问题 quadratic inequality arithmetic geometric inequality Kuhn-Tucker condition duality theorem entropy of the density
  • 相关文献

参考文献1

二级参考文献9

  • 1Fang Suceng., Rajasekera, J. R., Controlled perturbations for quadratically constrained quadratic programs,Mathematical Programming, 1986,36 : 276-289.
  • 2Fang, S. C. , Rajasekera,J. R. , Quadratically constrained minimum cross-entropy analysis, Mathematical Programming, 1989,44 : 85-96.
  • 3Peterson, E. L. , Saddle points and generalized geometric programming,J. Optimization Theory and Applications, 1978,26 : 15-41.
  • 4Peterson, E. L., Optimality conditions in generalized geometric programming,J. Optimization Theory and Applications, 1978,26 : 3-14.
  • 5Peterson, E. L., Constrained duality via unconstrained duality in generalized geometric programming, J. Optimization Theory and Applications, 1978,26 : 43-50.
  • 6Peterson, E. L., Fenchel' s duality theorem in generalized geometric programming, J. Optimization Theory and Applications, 1978,26 : 51-57.
  • 7Rockafellar, R. T. ,Convex Analysis, Princeton, New Jersey: Princeton University Press, 1970.
  • 8Zhang Jianzhong, Brockett, P, L., Quadratically constrained information theoretic analysis, SlAM J. Applied Mathematics, 1987,47 : 871-885.
  • 9Zhang Jianzhong,Duality and sensitivity analysis on the constrained MDI problems,Acta Mathematicae Applicatae Sinica, 1987, l0 : 308-323.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部