摘要
证明了对于一个环R,下列条件等价:(1)R是左凝聚的;(2)对任意正整数n,Mn(R)是左1-凝聚的;(3)Ext2R(R I,N)=0对于任意有限生成左理想I及F-内射模RN成立;(4)若N1≤N都是F-内射左R-模,则N N1也是F-内射模.
For a ring R, the following statements are equivalent:(1)R is left coherent;(2)For every positive integer n, M_n(R) is left 1-coherent;(3)Ext^2_R(R/I,N)=0 holds for every finitely generated left ideal I and every F-injective module R^N;(4)If N_1≤N are both F-injective left R-modules, then N/N_1 is also F-injective.
出处
《湖北民族学院学报(自然科学版)》
CAS
2003年第4期88-89,共2页
Journal of Hubei Minzu University(Natural Science Edition)
基金
湖北省教育厅重点科研项目(2003X024).
关键词
凝聚环
1-凝聚环
F-内射模
coherent rings
1-coherent rings
F-injective modules