摘要
研究了一致光滑Banach空间中,k 次增生算子方程x+Tx=f解的具混合误差的迭代过程.其中T不必是Lipschitz的,也不必是有界的.
The strong convergence of Ishikawa iteration processes with mixed errors to a solution of the equation x+Tx=f is studied, Where the T is a k-subaccretive operator in a uniformly smooth Banach space, but is neither bound and Lipschitz. Some well-know results are generalized.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2003年第6期850-855,共6页
Journal of Southwest China Normal University(Natural Science Edition)