期刊文献+

基于卷积神经网络的林火烟雾识别 被引量:3

Image Identification of Forest Fire Smoke Based on Convolutional Neural Network Algorithm
下载PDF
导出
摘要 基于传统的人工神经网络(Artificial Neural Network, ANN)提出了一种算法用来进行森林林火烟雾的图像识别。应用卷积神经网络(Convolutional Neural Network, CNN)结合反向传播法(Backpropagation, BP),选取适当的激励函数,训练神经网络。同时通过适当的池化方法大大提高了算法的效率,从而有效地通过神经网络对目标图像的特征学习,识别出烟雾图像。在对图像识别学习前对图像进行灰度化,并且在对图像进行二值化之后,再进行学习训练,排除了所需识别目标之外图像引入的干扰,从而提高了图像识别准确率。 An improved algorithm is proposed for image identification of forest fire smoke,based on traditional Artificial Neural Network(ANN)algorithm.By applying Convolutional Neural Network(CNN)algorithm,combined with Backpropagation(BP)algorithm,and selecting a proper active function,this algorithm will train the neural network to identify the images.Simultaneously,by a proper pooling method,the effectiveness of the algorithm will be improved significantly and the algorithm will identify the images very accurately.And before learning and identifying the image,the algorithm gets the gray scale image and then the binary image.Finally,it uses the binary image to identify and train,which also improves the accuracy,excluding the interference coming from other part of the image other than the target.The experiment shows the new algorithm possesses good practicability.
作者 陈培昕 刘嘉新 蒲先良 潘治杭 CHEN Pei-xin;LIU Jia-xin;PU Xian-liang;PAN Zhi-hang(College of Mechanical and Electrical Engineering,Northeast Forestry University,Harbin 150000,China)
出处 《仪表技术》 2019年第5期21-24,共4页 Instrumentation Technology
基金 东北林业大学大学生国家级创新训练计划项目资助(201810225050)
关键词 人工神经网络 卷积神经网络 反向传播法 林火烟雾 图像识别 artificial neural network(ANN) convolution neural network(CNN) backpropagation(BP) forest fire smoke image identification
  • 相关文献

参考文献4

二级参考文献26

  • 1张国云,郭龙源,吴健辉,胡文静.计算机视觉与图像识别[M].北京:科学出版社,2012.
  • 2Alex Krizhevsky, Ilya Sutskever, Geoff Hinton. Imagenet classification with deep con-volutional neural networks[J]. Advances in Neural Information Processing Systems 25, 2012:1106-1114.
  • 3DH Hubel,TN Wiesel. Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex[J]. Journal of Physi- ology(London), 1962,160 : 106-154.
  • 4K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in po- sition[J]. Biological Cybernetics, 1980, 36:193-202.
  • 5Y. I~ Cun, L. Bottou, Y. Bengio, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86( 11 ) :2278-2324.
  • 6Y. LeCun, B. Boser, J. S. Denker, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989,1(4): 541-551.
  • 7Yoshua Bengio, Learning Deep Architectures for AI[J]. Machine Learning, 2009,2( 1 ) : 1-127.
  • 8Glorot X, Bordes A,Bengio, Y. Deep sparse rectifier networks[C]. Proceedings of the 14th International Conference on Artificial Intelli- gence and Statistics. JMLR W&CP Volume, 2011,15:315-323.
  • 9Yoshua Bengio, Aaron Courville, and Pascal Vincent, representation learning: A review and new rerspectives[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, Issue No.08 - Aug. (2013 vol.35):1798-1828.
  • 10IA Yang-qing, Shelhamer Evan, Donahue Jeff, et al. caffe: convolutional architecture for Fast feature embedding[EB/OL]. 2014, arXiv preprint arXiv: 1408.5093.

共引文献170

同被引文献22

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部