期刊文献+

基于可信性理论的均值-熵-偏度投资组合模型及其算法求解 被引量:11

Mean-Entropy-Skewness Portfolio Model Based on Credibility Theory and Its Algorithm Solution
下载PDF
导出
摘要 本文考虑到证券市场的投资者往往面临着随机和模糊两种不确定性的情形,在模糊随机环境下把证券的收益率视作三角模糊变量,在可信性理论基础上建立了带融资约束条件的均值-熵-偏度三目标投资组合决策模型,拓展了基于可信性理论的投资组合决策模型的研究内容,同时通过对约束条件处理方法,外部档案维护方法等关键算子的改良,提出了一种新的约束多目标粒子群算法。本文运用该算法对模型进行求解,把得到的最优解与传统的多目标粒子群算法得到的最优解进行对比,结果表明新算法得到的最优解的质量会显著地优于传统的多目标粒子群算法的最优解,从而验证了算法的有效性和准确性。该算法可以在三维空间中得到一个分布性和逼近性较好的Pareto最优曲面,满足投资者对不同目标的差异需求,为投资者提供合理的投资组合决策方案。 Considering that investors are often faced with both random and fuzzy uncertainty in the securities market,in this paper,we regard securities yield as a triangular fuzzy variable. We build a mean-entropy-skewness portfolio model on the basis of credibility theory to extend the research about portfolio model based on credibility theory. At the same time,an improved constrained multi-objective particle swarm optimization algorithm is proposed by improving the key operators such as constraint condition method and the pareto optimal solutions maintenance method. The feasible solution is compared with the feasible solution generated by traditional multi-objective particle swarm optimization algorithm. The results show that the solution of the improved constrained multiobjective particle swarm algorithm is superior to that generated by traditional multi-objective particle swarm optimization algorithm. The feasibility and accuracy of the algorithm is verified,and the pareto optimal surface with better distribution and approximation can be obtained in three-dimensional space to meet the demand of different target,to provide investors with a reasonable portfolio decision.
作者 王灿杰 邓雪 WANG Can-jie;DENG Xue(South China University of Technology,School of Mathematics,Guangzhou 510640,China)
出处 《运筹与管理》 CSSCI CSCD 北大核心 2019年第2期154-159,192,共7页 Operations Research and Management Science
基金 2016年广东省自然科学基金项目(2016A030313545) 2018中央高校基本科研业务费(x2lxC2180170) 2018教育部人文社科规划基金(x2lxY9180090) 2018广东省软科学研究项目(201825)
关键词 可信性理论 粒子群算法 Pareto最优曲面 投资组合 credibility theory particle swarm algorithm pareto optimal surface investment portfolio
  • 相关文献

参考文献2

二级参考文献28

  • 1李炳宇,萧蕴诗,吴启迪.一种基于粒子群算法求解约束优化问题的混合算法[J].控制与决策,2004,19(7):804-807. 被引量:48
  • 2倪庆剑,邢汉承,张志政,王蓁蓁,文巨峰.粒子群优化算法研究进展[J].模式识别与人工智能,2007,20(3):349-357. 被引量:68
  • 3Schaffer J.D.. Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the lst International Conference on Genetic Algorithm, Lawrence Erlbaum Associates, Hillsdale, 1985, 93~100.
  • 4van Veldhuizen D.A., Lamont G.B.. Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. Evolutionary Computation, 2000, 8(2): 125~147.
  • 5Knowles J.D., Corne D.W.. Approximating the nondominated front using the Pareto archive evolutionary strategy. Evolutionary Computation, 2000, 8(2): 149~172.
  • 6Knowles J.D., Corne D.W.. M-PAES: A memetic algorithm for multiobjective optimization. In: Proceedings of the IEEE Conference on Evolutionary Computation, ICEC,2000,1: 325~332.
  • 7Zitzler E., Thiele L.. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257~271.
  • 8Zitzler E., Laumanns M., Thiele L.. SPEA2: Improving the strength Pareto evolutionary algorithm. Swiss Federal Institute of Technology, Lausanne, Switzerland, Technical Report TIK-Rep 103, 2001.
  • 9Srinivas N., Deb K.. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 1994, 2(3): 221~248.
  • 10Deb K., Pratap A., Agarwal S., Meyarivan T.. A fast and elitist multiobjective genetic algorithms: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182~197.

共引文献45

同被引文献61

引证文献11

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部