期刊文献+

k-NN METHOD IN PARTIAL LINEAR MODEL UNDER RANDOM CENSORSHIP 被引量:1

k-NN METHOD IN PARTIAL LINEAR MODEL UNDER RANDOM CENSORSHIP
下载PDF
导出
摘要 Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the estimators βn* and gn*forβ and g are obtained by using class K and the least square methods. It is shown that βn* is asymptotically normal and gn* achieves the convergent rate O(n-1/3). Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the estimators βn* and gn*forβ and g are obtained by using class K and the least square methods. It is shown that βn* is asymptotically normal and gn* achieves the convergent rate O(n-1/3).
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1995年第3期275-286,共12页 高校应用数学学报(英文版)(B辑)
关键词 Partial linear model censored data class K method k-nearest neighbor weights Partial linear model,censored data,class K method,k-nearest neighbor weights
  • 相关文献

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部