期刊文献+

一种基于SIFT特征的快速逐层遥感图像配准方法 被引量:7

Fast Hierarchical Registration Method for Remote Sensing Image based on SIFT
原文传递
导出
摘要 当前SIFT特征分层配准方法中存在特征点匹配复杂度高以及不同时相地物变化导致特征点误匹配等问题,提出一种基于SIFT特征的"低分辨率配准、高分辨率验证"快速逐层遥感图像配准方法。该方法针对同源同分辨率不同时相的遥感图像,通过在金字塔的低分辨率图层匹配特征点对并建立仿射变换模型,在金字塔的高分辨率图层评估并修正模型。实验表明:提出的方法在保证配准精度的前提下,有效提高了配准算法的效率。 For the current automatic image registration based on SIFT,feature point matching algorithm is time-consuming,in addition,the changes of multi-temporal images affect the accuracy of registration,this paper proposes a SIFT-based feature of the "low-resolution matching,high resolution authentication" hierarchical image registration algorithm to improve the above issues.In the proposed algorithm,affine transformation model is established in low-resolution pyramid images and sequentially evaluated and revised by match points in high resolution pyramid images.Experimental results show that the improved SIFT algorithm can reduce the time complexity with rather considerable accuracy.
出处 《遥感技术与应用》 CSCD 北大核心 2014年第5期873-877,共5页 Remote Sensing Technology and Application
基金 国家杰出青年科学基金项目(61125206) 国家自然科学基金项目(61262036)资助
关键词 遥感图像 图像配准 SIFT 变化检测 Remote sensing image Image registration SIFT Change detection
  • 相关文献

参考文献3

二级参考文献36

  • 1倪国强,刘琼.多源图像配准技术分析与展望[J].光电工程,2004,31(9):1-6. 被引量:83
  • 2李晓明,赵训坡,郑链,胡占义.基于Fourier-Mellin变换的图像配准方法及应用拓展[J].计算机学报,2006,29(3):466-472. 被引量:50
  • 3郑志彬,叶中付.基于相位相关的图像配准算法[J].数据采集与处理,2006,21(4):444-449. 被引量:34
  • 4Zitova B,Flusser J.Image registration methods:A survey[J].Image and Vision Computing,2003,21:977-1000.
  • 5Image registration[EB/OL].[2010].http://en.wikipedia.org/wiki/Image_registration.
  • 6Li H,Manjunath B S,Mitra S K.A contour-based approach to multisensor image registration[J].IEEE Trans Image Process,1995,4(3):320-334.
  • 7Li Qiao-liang,Wang Guo-you,Liu Jian-guo.Robust scale invariant feature matching for remote sensing image registration[J].IEEE Geoscienee and Remote Sensing Letters,2009,6(2):287-291.
  • 8Flusser J,Suk T.A moment-based approach to registration of images with affine geometric distortion[J].IEEE Trans Geosci Remote Sens,1994,32(3):382-387.
  • 9Wen Gong-jian,Lv Jin-jian,Yu Wen-xian.A high performance feature-matching method for image registration by combining spatial and similarity information[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46(4):1266-1277.
  • 10De Castro E,Morandi C.Registration of translated and rotated images using finite Fourier transforms[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,9(5):700-703.

共引文献10

同被引文献53

  • 1万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 2高爽,肖扬.两种基于灰度相似性测度的超声波图像配准方法的比较[J].中国图象图形学报,2006,11(3):337-341. 被引量:6
  • 3钟家强,王润生.基于互信息相似性度量的多时相遥感图像配准[J].宇航学报,2006,27(4):690-694. 被引量:5
  • 4SONG Z, ZHOU S, GUAN J. A novel image registration algorithm for remote sensing under affine transformation [ J]. IEEE Transac- tions on Geoscience and Remote Sensing, 2014, 52(8): 4895 - 4912.
  • 5VONGSY K, EISMANN M T, MENDENHALL M J. Extension of the linear chromodynamics model for spectral change detection in the presence of residual spatial misregistration [ J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3005 -3021.
  • 6BARNEA D I, SILVERMAN H F. A class of algorithms for fast dig- ital image registration [ J]. IEEE Transactions on Computers, 1972, 21(2): 179-186.
  • 7XING C, QIU P. Intensity-based image registration by nonparamct- ric local smoothing [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(10): 2081-2092.
  • 8WANG W, LUO D, LI W. Algorithm for automatic image registra- tion on Harris-Laplace features [ J]. Journal of Applied Remote Sensing, 2009, 3(1): 033554.
  • 9HUO C, PAN C, I-IUO L, et al. Multilevel SIFT matching for large- size VHR image registration [ J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 171-175.
  • 10MOORTHI S M, GAMBHIR R K, MISRA I, et al. Adaptive sto- chastic gradient descent optimization in multi temporal satellite image registration [ C]// Proceedings of the 2011 IEEE Recent Advances in Intelligent Computational Systems. Piscataway, NJ: IEEE, 2011 : 373 - 377.

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部