期刊文献+

高时空分辨率PM_(2.5)浓度土地利用回归模拟与制图 被引量:11

High Spatio-temporal Resolution Simulation and Mapping of PM_(2.5) Concentration Using Land Use Regression Model
下载PDF
导出
摘要 针对传统地面监测手段稀疏获取PM2.5浓度的缺陷,该研究在利用中分辨率成像光谱仪(MODIS)遥感影像反演500m空间分辨率气溶胶光学厚度(AOD)的基础上,辅以人口密度、植被叶面积指数等地理特征要素,构建了研究区时均尺度PM2.5浓度土地利用回归(LUR)模型,并与经典克里格插值方法(OK)对比进行精度评价。结果表明:(1)研究区内部AOD存在明显空间分异,中心城区AOD值高于周边地区;(2)融合AOD要素的最优LUR模型相关系数可达0.51;(3)相比OK方法,LUR模型生成的PM2.5浓度图可客观反映研究区空气污染的空间变化。研究表明,融合遥感气溶胶数据的LUR模型可在短时间尺度准确模拟地面高空间分辨率PM2.5浓度。 Relative to the defect of traditional monitoring method of PM2 .5 concentrations with sparse field campaigns, remote sensing has advantages of wide coverage and continuous observation in space.In this study,aerosol optical depth with 500m resolution was generated with the Moderate Resolution Imaging Spectroradionmeter (MODIS)image data,and the AOD was then used to build a land use regression (LUR)model for simulating the PM2 .5 concentrations in an hourly span,and the accuracy of the optimal modeling method was evaluated by comparing with the result of Ordinary Kriging (OK)interpolation. Then the optimal LUR modeling method was used to simulating and mapping PM2 .5 concentration in the study area.The results show that:(1)the AOD has obvious spatial differentiation of the study area and the values are higher in the downtown area than the surrounding area;(2)among of LUR models,the correlation coefficient of optimum LUR model can reach 0.51 by incorporating AOD data;(3)the optimum LUR model can well reveal the spatial variation of PM2 .5 with smaller relative errors than OK interpolation method.It is suggested that the LUR model by incorporating AOD data can accurately simulate PM2 .5 concentrations at high spatial resolution in the short time scale,and the proposed LUR model is an effective method of mapping PM2 .5 concentration with high spatio-temporal resolution under sparse ground conditions.
出处 《遥感信息》 CSCD 北大核心 2015年第5期94-101,共8页 Remote Sensing Information
基金 国家自然科学基金(41201384) 国家测绘地理信息局地理空间信息工程重点实验室基金(201238 2014J07)
关键词 PM2.5 空气污染 GIS MODIS 土地利用 PM2.5 Air pollution GIS MODIS Land use
  • 相关文献

参考文献20

  • 1Monir H. Sharker,Hassan A. Karimi.Computing least air pollution exposure routes[J]. International Journal of Geographical Information Science . 2014 (2)
  • 2Hector A. Olvera,Mario Garcia,Wen-Whai Li,Hongling Yang,Maria A. Amaya,Orrin Myers,Scott W. Burchiel,Marianne Berwick,Nicholas E. Pingitore.Principal component analysis optimization of a PM 2.5 land use regression model with small monitoring network[J]. Science of the Total Environment . 2012
  • 3Xuefei Hu,Lance A. Waller,Mohammad Z. Al-Hamdan,William L. Crosson,Maurice G. Estes,Sue M. Estes,Dale A. Quattrochi,Jeremy A. Sarnat,Yang Liu.Estimating ground-level PM 2.5 concentrations in the southeastern U.S. using geographically weighted regression[J]. Environmental Research . 2012
  • 4Comparing universal kriging and land-use regression for predicting concentrations of gaseous oxides of nitrogen (NO x ) for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air)[J]. Atmospheric Environment . 2011 (26)
  • 5Evaluation of land-use regression models used to predict air quality concentrations in an urban area[J]. Atmospheric Environment . 2010 (30)
  • 6Hsien-Ho Lin,Megan Murray,Ted Cohen,Caroline Colijn,Majid Ezzati.Effects of smoking and solid-fuel use on COPD, lung cancer, and tuberculosis in China: a time-based, multiple risk factor, modelling study[J]. The Lancet . 2008 (9648)
  • 7M.A. Arain,R. Blair,N. Finkelstein,J.R. Brook,T. Sahsuvaroglu,B. Beckerman,L. Zhang,M. Jerrett.The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies[J]. Atmospheric Environment . 2007 (16)
  • 8Jason G. Su,Michael Brauer,Bruce Ainslie,Douw Steyn,Timothy Larson,Michael Buzzelli.An innovative land use regression model incorporating meteorology for exposure analysis[J]. Science of the Total Environment . 2007 (2)
  • 9Patrick H. Ryan,Grace K. LeMasters.A Review of Land-use Regression Models for Characterizing Intraurban Air Pollution Exposure[J]. Inhalation Toxicology . 2007 (S1)
  • 10Zev Ross,Michael Jerrett,Kazuhiko Ito,Barbara Tempalski,George D. Thurston.A land use regression for predicting fine particulate matter concentrations in the New York City region[J]. Atmospheric Environment . 2006 (11)

共引文献5

同被引文献128

引证文献11

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部