期刊文献+

半直接配点法在航天器追逃问题求解中的应用 被引量:10

Application of Semi-Direct Collocation Method for Solving Pursuit-Evasion Problems of Spacecraft
下载PDF
导出
摘要 采用半直接配点法求解时间固定两航天器追逃问题,提出一种新的数值求解追逃双方最优控制策略的方式,避免了求解非线性两点边值问题。在两航天器均为连续小推力假设条件下,以终端距离为支付函数,给出了半直接配点法求解此追逃问题的过程。在此数值方法中,根据半直接转换将微分对策问题转化为一个最优控制问题,由Gauss-Lobbato配点法最终将此最优问题转化为非线性规划问题,继而通过序列二次规划方法求解。这种半直接配点法避免微分对策问题最优策略的必要条件(两点边值问题)求解,并且数值稳定性好。数值仿真给出了追逃双发的最优控制策略和相应的追逃轨迹。 The semi-direct collocation method is adopted for solving the pursuit-evasion problem with fixed timehorizon.A new numerical way to solve the optimal control strategies of the pursuit and evasion spacecraft is proposed such that a two-point boundary value problem is not necessary to be solved.Under the assumption of the continuous low-thrust,the procedure solving such a pursuit-evasion problem is given with the payoff of the terminal distance of two spacecraft.In such a numerical method,the differential game is reduced to an optimal control problem according to the semitransformation.Then,by the Gauss-Lobbato collocation method the optimal control problem is reduced to a nonlinear programming problem which is solved by the sequential quadratic programming method.Such a semi-direct collocation method does not need to solve the necessary condition(a two-point boundary value problem)for the optimal strategies of the differential games,and it is numerically stable.The numerical simulation result shows the optimal control strategies and the associated pursuit-evasion trajectory for a pursuit-evasion problem of spacecraft.
作者 郝志伟 孙松涛 张秋华 谌颖 HAO Zhi-wei;SUN Song-tao;ZHANG Qiu-hua;CHEN Ying(Department of Astronautical Science and Mechanics,Harbin Institute of Technology,Harbin 150001,China;Beijing Institute of Control Engineering,Beijing 100190,China)
出处 《宇航学报》 EI CAS CSCD 北大核心 2019年第6期628-635,共8页 Journal of Astronautics
基金 中央高校基本科研业务费专项资金(HIT.NSRIF.201620)
关键词 航天器追逃问题 微分对策 最优控制 两点边值问题 半直接配点法 Pursuit-evasion problem of spacecraft Differential game Optimal strategy Two-point boundary-value problem Semi-direct collocation method
  • 相关文献

参考文献2

二级参考文献17

  • 1Isaacs R. Differential games [ M ]. New York : John Wiley and Sons, 1965.
  • 2Berkovitz L D. Necessary conditions for optimal strategies in a class of differential games and control problems [ J ]. SIAM Journal on Control and Optimization, 1967, 5 ( 1 ) : 1 - 24.
  • 3Friedman A. Differential games [ M ]. Rhode Island : American Mathematical Society, 1974.
  • 4Turetsky V, Shinar J. Missile guidance laws based on pursuit- evasion game formulations [ J ]. Journal of Optimization Theory and Application, 2003, 39(4) : 607 -618.
  • 5Breitner M H, Pesch, Grimm H J. Complex differential games of pursuit-evasion type with state constraints, part 1: necessary conditions for open-loop strategies [ J ]. Journal of Optimization Theory and Applications, 1993, 78 (3) : 419 - 441.
  • 6Breitner M H, Pesch, Grimm H J. Complex differential games of pursuit-evasion type with state constraints, part 2: necessary conditions for open-loop strategies [ J ]. Journal of Optimization Theory and Applications, 1993, 78(3) : 443 -463.
  • 7Dickmanns E, Well K. Approximate solution of optimal control problems using third order hermite polynomial functions [ C ]. Optimization Techniques IFIP Technical Conference, Novosibirsk, Russia, July 1-7, 1974.
  • 8Stoer J, Bulirsch R. Introduction to numerical analysis [ M ]. New York: Springer, 1983.
  • 9Deb K. A fast and elitist multi - objective genetic algorithm: NSGA-II[ J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2) : 182 -197.
  • 10Menon P K A, Calise A J. Interception, evasion, rendezvous and velocity-to-be-gained guidance for spacecraft [ J ]. AIAA Journal, 1987, 2318 : 334 - 341.

共引文献19

同被引文献103

引证文献10

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部