摘要
This paper describes a comprehensive model for predicting the evolution of the velocity and temperature fields in electromagnetically-driven flows during solidification.The electromagnetic field was formulated using the mutual inductance method,which accounts for the metal,chill blocks,and magnetic shields.The model solves the heat transfer equation throughout the system,as well as the fluid flow equations in the liquid and mushy regions.A two-zone model for the mushy region that accounts for dampening of momentum by the turbulent field has been developed.The turbulence in the molten region was determined using the k-s model.Calculations were performed for unidirectional solidification in a bottom chill mold placed in a stationary magnetic field.Computed results show that the flow field at the beginning of solidification shows typical four recirculating loops,and later evolves to two recirculating loops as solidification progresses.The magnitude of the velocity in the bulk liquid was found to decrease as solidification progresses.
This paper describes a comprehensive model for predicting the evolution of the velocity and temperature fields in electromagnetically-driven flows during solidification.The electromagnetic field was formulated using the mutual inductance method,which accounts for the metal,chill blocks,and magnetic shields.The model solves the heat transfer equation throughout the system,as well as the fluid flow equations in the liquid and mushy regions.A two-zone model for the mushy region that accounts for dampening of momentum by the turbulent field has been developed.The turbulence in the molten region was determined using the k-s model.Calculations were performed for unidirectional solidification in a bottom chill mold placed in a stationary magnetic field.Computed results show that the flow field at the beginning of solidification shows typical four recirculating loops,and later evolves to two recirculating loops as solidification progresses.The magnitude of the velocity in the bulk liquid was found to decrease as solidification progresses.
基金
Item Sponsored by National Science Foundation under grant CMMI-0856320