期刊文献+

非线性粘弹性Klein-Gordon方程的一致衰减(英文) 被引量:1

Uniform Energy Decay Rates for the Nonlinear Viscoelastic Klein-Gordon Equation
下载PDF
导出
摘要 本文研究非线性粘弹性Klein-Gordon方程的一致衰减.结合MATHEMATICA软件,我们提出一种借助计算技术的方法用以构造辅助泛函.最后,利用辅助泛函及精确的先验估计,证明了在时间趋于无穷时,能量泛函依指数衰减或多项式衰减趋向于零. In this paper,we consider the uniform decay estimate of the nonlinear viscoelastic Klein-Gordon model.With the aid of MATHEMATICA,a method has been proposed to construct the auxiliary functionals by means of the computational techniques.Finally,by introducing appropriate auxiliary functionals and precise priori estimates,we prove that the energy functional decays exponentially or polynomially to zero as time goes to infinity.
作者 张风云 李傅山 陈祥平 ZHANG Fengyun;LI Fushan;CHEN Xiangping(Department of Mathematics,Jining University,Qufu 273155,China;School of Mathematical Sciences,Qufu Normal University,Qufu 273165,China)
出处 《应用数学》 CSCD 北大核心 2019年第2期262-271,共10页 Mathematica Applicata
基金 Supported by the Teaching Perform Project of Jining University and the Natural Science Foundation of Shandong Province of China(ZR2013AL005)
关键词 KLEIN-GORDON方程 数值方法 指数衰减 多项式衰减 Klein-Gordon equation Computational technique Exponential decay Polynomial decay
  • 相关文献

参考文献1

二级参考文献17

  • 1Berrimi S, Messaoudi S A. Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Anal TMA, 2006, 64:2314-2331.
  • 2Berrimi S. and Messaoudi S.A., Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping. Electronic J Differ Eqns, 2004, 88:1-10.
  • 3Cavalcanti M M, Domingos Cavalcanti V N, Ferreira J. Existence and uniform decay of nonlinear vis- coelastic equation with strong damping. Math Method Appl Sci, 2001, 24:1043-1053.
  • 4Cavalcanti M M, Domingos Cavalcanti V N, Soriano J A. Exponential decay for the solution of semilinear viscoelastic wave equation with localized damping. Electronic J Differ Eqns, 2002, 44:1-14.
  • 5Cavalcauti M M, Domingos Cavalcanti V N, Prates Filho J S, Soriano J A. Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping. Differ Integral Equ, 2001, 14(1): 85-116.
  • 6Cavalcanti M M, Oquendo H P. Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J Control Optim, 2003, 42(4): 1310-1324.
  • 7Furati K, Tatar N -e. Uniform boundedness and stability for a viscoelastic problem. Appl Math Comput, 2005, 167:1211-1220.
  • 8Hrusa W J. Global existence and asymptotic stability for a nonlinear hyperbolic Volterra equation with large initial data. SIAM J Math Anal, 1985, 16:110-134.
  • 9Medjden M, Tatar N -e. On the wave equation with a temporal nonlocal term. Dyn Syst Appl, 2007, 16: 665-672.
  • 10Medjden M, Tatar N -e. Asymptotic behavior for a viscoelastic problem with not necessarily decreasing kernel. Appl Math Comput, 2005, 167:1221-1235.

共引文献1

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部