摘要
研究一类具有典型脉冲源项的二阶奇摄动边值问题,用合成展开法构造出其渐近解,然后用微分不等式定理证明了原问题解的存在性和形式渐近解的一致有效性,最后给出例子.
A class of second-order singularly perturbed boundary value problems with a pulse source term is studied.Its asymptotic solution is constructed by the composite expansion method.The existence of solution to the original problem and the uniformly validity of the formal asymptotic solution are proved by using the theorem of differential inequalities.Finally,an example is presented as an illustration.
作者
谢亚南
谢峰
XIE Yanan;XIE Feng(College of Science,Donghua University,Shanghai 201620,China)
出处
《应用数学》
CSCD
北大核心
2019年第2期284-290,共7页
Mathematica Applicata
基金
上海市自然科学基金(15ZR1400800)
关键词
奇摄动
脉冲源项
上、下解
Singular perturbation
Pulse source term
Upper and lower solution