摘要
本文考虑二维和三维区域上高波数Helmholtz散射问题的高阶(多项式次数p≥2)连续多罚有限元方法.本文证明在加罚参数的虚部大于零的条件下,对任意k, h, p,连续多罚有限元方法是绝对稳定的,即都存在唯一解.这里k是波数, h为网格尺寸.
Some continuous interior multi-penalty finite element method(CMP-FEM)of using piecewise polynomials of order p 2 for the Helmholtz equation in the two and three dimensions is considered.The proposed CMP-FEM is stable(hence well-posed)for any k,h,p and penalty parameters with positive imaginary parts,where k is the wave number,h is the mesh size.
作者
朱凌雪
ZHU Lingxue(Department of Mathematics,Jinling Institute of Technology,Nanjing 211169,China)
出处
《应用数学》
CSCD
北大核心
2019年第2期423-431,共9页
Mathematica Applicata
基金
Supported by the National Natural Science Foundation of China(11401272)
the Natural Science Foundation of Jiangsu Province(BK20140105)