摘要
非参数模型是统计学中常用的一类模型.在实际应用中,回归函数可能不是连续的,即在某些未知的位置上存在跳点.检测这些跳点对于回归函数的估计非常重要.本文基于B样条和众数估计,提出一个稳健跳点检测方法.然后利用检测出的跳点给出了回归函数的稳健有效估计量,并讨论了参数的选择.数值模拟和实例分析验证了所提方法在有限样本下的表现.
Nonparametric models are commonly used models in statistics.In practical applications,the regression function may be discontinuous,namely,some jump points exist at some unknown positions.Detecting such jump points is important for estimating the regression function.This article proposes a robust jump detection method based on the B-spline and modal regression.Using the detected jump points,we provide a robust jump-detection-based estimator for the regression function,and then the selection of parameters is discussed.Numerical studies and a real data analysis are conducted to assess the finite sample performance of the proposed method.
作者
韩忠成
林金官
HAN Zhongcheng;LIN Jinguan(School of Mathematics,Southeast University,Nanjing 211189,China;School of Statistics and Mathematics,Nanjing Audit University,Nanjing 211815,China)
出处
《应用数学》
CSCD
北大核心
2019年第2期479-485,共7页
Mathematica Applicata
基金
国家自然科学基金面上项目(11571073)
国家社会科学基金项目(17CTJ016)
关键词
带跳非参数模型
B样条
稳健有效估计量
Nonparametric models with jump point
B-spline
Robust and efficient estimator