摘要
Finite element(FE) simulation is a powerful tool for investigating the mechanism of machining fiber?reinforced polymer composite(FRP). However in existing FE machining simulation works,the two?dimensional(2 D) progressive damage models only describe material behavior in plane stress,while the three?dimensional(3 D) damage models always assume an instantaneous sti ness reduction pattern. So the chip formation mechanism of FRP under machin?ing is not fully analyzed in general stress state. A 3 D macro?mechanical based FE simulation model was developed for the machining of unidirectional glass fiber reinforced plastic. An energy based 3 D progressive damage model was proposed for damage evolution and continuous sti ness degradation. The damage model was implemented for the Hashin?type criterion and Maximum stress criterion. The influences of the failure criterion and fracture energy dissipa?tion on the simulation results were studied. The simulated chip shapes,cutting forces and sub?surface damages were verified by those obtained in the reference experiment. The simulation results also show consistency with previous 2 D FE models in the reference. The proposed research provides a model for simulating FRP material behavior and the machining process in 3 D stress state.
Finite element(FE) simulation is a powerful tool for investigating the mechanism of machining fiber?reinforced polymer composite(FRP). However in existing FE machining simulation works,the two?dimensional(2 D) progressive damage models only describe material behavior in plane stress,while the three?dimensional(3 D) damage models always assume an instantaneous sti ness reduction pattern. So the chip formation mechanism of FRP under machin?ing is not fully analyzed in general stress state. A 3 D macro?mechanical based FE simulation model was developed for the machining of unidirectional glass fiber reinforced plastic. An energy based 3 D progressive damage model was proposed for damage evolution and continuous sti ness degradation. The damage model was implemented for the Hashin?type criterion and Maximum stress criterion. The influences of the failure criterion and fracture energy dissipa?tion on the simulation results were studied. The simulated chip shapes,cutting forces and sub?surface damages were verified by those obtained in the reference experiment. The simulation results also show consistency with previous 2 D FE models in the reference. The proposed research provides a model for simulating FRP material behavior and the machining process in 3 D stress state.
基金
Supported by Science Foundation of NPU(Grant No.3102015JCS05009)
Chinese Foreign Talents Introduction and Academic Exchange Program(Grant No.B13044)