期刊文献+

Grinding Chatter Detection and Identication Based on BEMD and LSSVM 被引量:11

下载PDF
导出
摘要 Grinding chatter is a self?induced vibration which is unfavorable to precision machining processes. This paper proposes a forecasting method for grinding state identification based on bivarition empirical mode decomposition(BEMD) and least squares support vector machine(LSSVM), which allows the monitoring of grinding chatter over time. BEMD is a promising technique in signal processing research which involves the decomposition of two?dimen?sional signals into a series of bivarition intrinsic mode functions(BIMFs). BEMD and the extraction criterion of its true BIMFs are investigated by processing a complex?value simulation chatter signal. Then the feature vectors which are employed as an amplification for the chatter premonition are discussed. Furthermore, the methodology is tested and validated by experimental data collected from a CNC guideway grinder KD4020 X16 in Hangzhou Hangji Machine Tool Co., Ltd. The results illustrate that the BEMD is a superior method in terms of processing non?stationary and nonlinear signals. Meanwhile, the peak to peak, real?time standard deviation and instantaneous energy are proven to be e ec?tive feature vectors which reflect the di erent grinding states. Finally, a LSSVM model is established for grinding status classification based on feature vectors, giving a prediction accuracy rate of 96%. Grinding chatter is a self?induced vibration which is unfavorable to precision machining processes. This paper proposes a forecasting method for grinding state identification based on bivarition empirical mode decomposition(BEMD) and least squares support vector machine(LSSVM), which allows the monitoring of grinding chatter over time. BEMD is a promising technique in signal processing research which involves the decomposition of two?dimen?sional signals into a series of bivarition intrinsic mode functions(BIMFs). BEMD and the extraction criterion of its true BIMFs are investigated by processing a complex?value simulation chatter signal. Then the feature vectors which are employed as an amplification for the chatter premonition are discussed. Furthermore, the methodology is tested and validated by experimental data collected from a CNC guideway grinder KD4020 X16 in Hangzhou Hangji Machine Tool Co., Ltd. The results illustrate that the BEMD is a superior method in terms of processing non?stationary and nonlinear signals. Meanwhile, the peak to peak, real?time standard deviation and instantaneous energy are proven to be e ec?tive feature vectors which reflect the di erent grinding states. Finally, a LSSVM model is established for grinding status classification based on feature vectors, giving a prediction accuracy rate of 96%.
出处 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第1期90-102,共13页 中国机械工程学报(英文版)
基金 National Natural Science Foundation of China(Grant No.51475432) Zhejiang Provincial National Natural Science Foundation of China(Grant No.LZ13E050003) State Key Program of National Natural Science of China(Grant Nos.U1234207,U1709210)
  • 相关文献

参考文献13

二级参考文献108

共引文献367

同被引文献104

引证文献11

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部