期刊文献+

分数阶Lagrange系统的共形不变性与守恒量

Conformal invariance and conserved quantity of a fractional Lagrange system
下载PDF
导出
摘要 研究Riemann-Liouville导数下分数阶Lagrange系统的共形不变性与守恒量.首先,建立分数阶d′Alembert-Lagrange原理和分数阶Lagrange方程,给出分数阶Lagrange系统的共形不变性的定义及其确定方程;其次,通过研究分数阶Lagrange系统共形不变性和Lie对称性之间的关系,导出共形因子的表达式;最后,给出相应于分数阶Lagrange系统的共形不变性的Noether型分数阶守恒量.文末,给出算例以说明结果的应用. The conformal invariance and conserved quantity for afractional Lagrange system in terms of Riemann-Liouville derivatives have been studied. Firstly, the fractional d′Alembert-Lagrange principle and the fractional Lagrange equations have been established, and the definition and corresponding determining equation of conformal invariance for the fractional Lagrange system have been given. Secondly, by studying the relationship between the conformal invariance and the Lie symmetry of the fractional Lagrange system, the conformal factor had derived. Finally, the fractional conserved quantity of Noether type corresponding to the conformal invariance of the fractional Lagrange system has been given. At the end of the paper, an example has been given to illustrate the application.
作者 韩雪梅 张毅 HAN Xue-mei;ZHANG Yi(College of Mathematics and Physics,Suzhou University of Science and Technology,Suzhou 215009,China;College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,China)
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第2期298-308,共11页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金(11572212 11272227)
关键词 分数阶Lagrange系统 Riemann-Liouville导数 共形不变性 LIE对称性 分数阶守恒量 fractional Lagrange system Riemann-Liouville derivative conformal invariance Lie symmetry fractional conserved quantity
  • 相关文献

参考文献10

二级参考文献144

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部