期刊文献+

抗光线干扰的复杂背景下运动靶标实时跟踪技术 被引量:1

Motion target real-time tracking technology of light anti-interference under the complex background
下载PDF
导出
摘要 本文针对受光线干扰影响的复杂背景下目标检测问题,实现运动靶标的实时跟踪。研究采用方向滤波器克服场景光照以及大气湍流对目标特征造成模糊的影响。采用归一化积相关法计算目标模板与实时图像的相关性定位靶标位置,并研究分层金字塔模板搜索方法减少计算量实现了靶标的快速跟踪。为了提高系统的鲁棒性,消除场景变化对目标跟踪位置产生的偏差及错判,本文采用了目标轨迹运动预测技术。通过实验验证,结果表明本系统目标跟踪稳定可靠,计算效率高,满足工程中的实际应用需要。 This paper research target detection on the light interference effect under complicated background. We implement the real-time track of motion target. We research direction filter the fuzzy target characteristics which caused by thescene illumination and atmospheric turbulence. We locate target position by the NProd method. This Methodcan obtain the correlation of target template and real-time image.We study the layered pyramid template search method to reduce computation. Then we achieve the fast targettracking. In order to improve the robustness of the systemand eliminate the scene changes on target tracking position deviation and wrongly, this paper adopted the target trajectory prediction technology. Through the experiment, the results show that the target tracking system is stable, reliable and high computational efficiency. The methods of this paper can meet the needs of the practical application in engineering.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第S1期34-38,共5页 Chinese Journal of Scientific Instrument
基金 吉林省科技发展计划项目(20130102017JC) 国家高技术研究发展计划(863)(006AA703405F)资助
关键词 方向滤波 归一化积相关 运动预测 Direction filtering NProd Motion prediction
  • 相关文献

参考文献4

二级参考文献56

  • 1张金国,吕庭豪.基于MATAB的改进模板匹配方法的机器人目标识别系统[J].机器人,2003,25(z1):623-625. 被引量:4
  • 2宋仁庭,杨卫平,杨明月.模板匹配算法对运动目标自动锁定跟踪的研究[J].红外与激光工程,2007,36(z2):197-200. 被引量:5
  • 3孙玉秋,田金文,柳健.基于图像金字塔的分维融合算法[J].计算机应用,2005,25(5):1064-1065. 被引量:8
  • 4黄飞,李德华,姚迅.基于相关匹配及自适应模板更新的目标跟踪新方法[J].计算机工程,2007,33(16):147-149. 被引量:12
  • 5KYRIACOU T, BUGMANN G, LAURIA S. Vision-based urban navigation procedures for verbally instructed robots[ J]. Robotics and Autonomous Systems, 2005, 51(1) : 69 -80.
  • 6COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5) : 564 -577.
  • 7ROSS D A, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[ J]. International Journal of Computer Vision, 2008, 77( 1/2/) : 195-141.
  • 8LEE K, HO J, YANG M, et al. The honda/UCSD video database. [ 2011 -02 -20]. http://vision, ucsd. edu/~ leekc/HondaUCSDVideoDatabase/HondaUCSD. html.
  • 9LEE K C, HO J, YANG M H, et al. Visual tracking and recognition using probabilistic appearance manifolds[ J]. Computer Vision and Image Understanding, 2005, 99(3) : 303 -331.
  • 10Jurie F, Dhome M. Hyperplane Approximation for Template Matching [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24( 7 ) : 996-1000.

共引文献32

同被引文献5

引证文献1

  • 1刘鹏,熊泽宇,景文博,冯萱,张俊豪,刘桐伯,吴雪妮,夏璇,万琳琳,赵海丽.降质靶标检测算法[J].兵工学报,2024,45(6):2065-2075.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部