期刊文献+

基于自动化三维超声冠状面图像的腹壁手术切口检测算法 被引量:2

Algorithm for abdominal surgery incision detection based on automated 3D ultrasound coronal plane images
下载PDF
导出
摘要 切口疝是发生于原手术切口区域的腹壁缺损,手术切口的准确定位对于切口疝的诊断具有重要临床意义。本文提出一种基于腹壁三维超声冠状面图像的手术切口检测算法,可辅助医生快速定位切口疝病灶区域。算法首先采用斑点降噪各向异性扩散算法对冠状面超声图像进行滤波处理;然后再进行图像预处理操作以减少算法运算量,提高算法执行效率;最后通过边缘检测、最大距离筛选和线性拟合操作获得原手术切口的直线方程。结果表明:算法拟合的手术切口直线与实际手术切口位置非常接近,拟合效果好,精确度高。 Incisional hernia is an abdominal wall defect that occurs in the original incision area.Accurate positioning of surgery incision has important clinical value for incisional hernia diagnosis.In this paper,an algorithm is proposed for abdominal surgery incision detection based on automated 3D ultrasound coronal plane images.Firstly,the coronal plane ultrasound images are filtered by using Speckle Reducing Anisotropic Diffusion method.Then,the image pre-processing operations are used to reduce the amount of calculation and improve the execution efficiency.Finally,a straight-line equation of the original surgery incision is obtained by using edge detection,maximum distance screening and linear fitting.It is shown in the results that the fitting line of the surgery incision is very close to the location of the actual surgery incision,which means the algorithm has satisfied fitting features and high detection precision.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第S1期23-27,共5页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(11474071 61561049 61661050) 云南省教育厅科学研究基金重点项目(2015Z013) 上海申康医院发展中心临床辅助科室(超声医学)能力建设项目(SHDC22015013)资助
关键词 自动化三维超声 冠状面图像 腹壁手术切口 检测算法 automated 3D ultrasound coronal plane images abdominal surgery incision detection algorithm
  • 相关文献

参考文献4

二级参考文献58

  • 1都基焱,赵炳爱,范晓虹,苏辉.SAR图像斑点噪声滤除方法应用研究[J].系统工程与电子技术,2004,26(8):1027-1029. 被引量:4
  • 2叶鸿瑾,张雪英,何小刚.基于小波变换和中值滤波的医学图像去噪[J].太原理工大学学报,2005,36(5):511-514. 被引量:22
  • 3RODDY D. Advanced power plant materials, design and technology [ M ]. UK: Woodhead Publ. , 2010.
  • 4LU G, YAN Y, COLECHIN M. A digital imaging based multi-functional flame monitoring system [ J ]. IEEE Transactions on Instrumentation and Measurement, 2004, 53(4) :1152-1158.
  • 5QIU T, YAN Y, LU G. An autoadaptive edge-detection al- gorithm for flame and fire image processing [ J ]. IEEE Transactions on Instrumentation and Measurement,2012, 61 (5) :1486-1493.
  • 6GILABERT G, LU G, YAN Y. Three-dimensional tomo- graphic reconstruction of the luminosity distribution of a combustion flame [ J ]. IEEE Transactions on Instrumenta- tion and Measurement, 2007,56 (4) : 1300 - 1306.
  • 7ADKINS C W. Users guide for fire image analysis system- Version 5.0 : A tool for measuring fire behavior character- istics [ M ]. U. S. Dept. Agric. , Forest Service, Southern Res. Station, Asheville, NC, Gen. Teeh. Rep. SE93,1995.
  • 8BHEEMUL H C, LU G, YAN Y. Three-dimensional visu- alization and quantitative characterization of gaseous flames [ J ]. Measurement Science and Technology, 2002, 13 (10) : 1643-1650.
  • 9ZHANG Z, ZHAO J, ZHANG D, et al. Contottr based forest fire detection using : and wavelet[ C]. Proceedings-Inter-national Conference on Computer Science and Software En- gineering, Wuhan, China,2008:760-763.
  • 10TOREYIN B U, DEDEOGLU Y, and CETIN A E. Flame detection in video using hidden Markov models [ C ]. Pro- ceedings-Intemational Conference on Image Processing, Genova, Italy, 2005 : 1230-1233.

共引文献55

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部