期刊文献+

A fault identification method of rotating machinerybased on t-SNE 被引量:1

A fault identification method of rotating machinerybased on t-SNE
下载PDF
导出
摘要 A fault identification method ofrotating machinery is proposed,which combines wavelet packet of time-frequency analysis and manifold learning.Firstly,the sampled vibration signal is decomposed to multilayer information with wavelet packet decomposition(WPD) method.Andevery level data of wavelet packet decomposition is processed bydemodulatingof Hilbert transform,eliminating the high frequency noiseof FIR filterand reducing the data length of the low frequency of resampling.Further,every level data vector is deal with normalization and calculated for the auto power spectrum.Finally,the manifold learning methods of t distributed stochastic neighbor embedding(t-SNE) is applied to do dimension reduction to generate 2D manifold figure data.Different fault forms of gearbox have different manifold features,which is used to identify failure status of equipment.With the experiment test,the feasibility and effectiveness of this identification method is verified. A fault identification method ofrotating machinery is proposed,which combines wavelet packet of time-frequency analysis and manifold learning.Firstly,the sampled vibration signal is decomposed to multilayer information with wavelet packet decomposition(WPD) method.Andevery level data of wavelet packet decomposition is processed bydemodulatingof Hilbert transform,eliminating the high frequency noiseof FIR filterand reducing the data length of the low frequency of resampling.Further,every level data vector is deal with normalization and calculated for the auto power spectrum.Finally,the manifold learning methods of t distributed stochastic neighbor embedding(t-SNE) is applied to do dimension reduction to generate 2D manifold figure data.Different fault forms of gearbox have different manifold features,which is used to identify failure status of equipment.With the experiment test,the feasibility and effectiveness of this identification method is verified.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第S1期152-156,共5页 Chinese Journal of Scientific Instrument
基金 supported by the National Natural Science Foundation-supported Program(515750055) Beijing Municipal Natural Science Foundation(3131002)
关键词 WPD HILBERT t-SNE 2D manifold figure data WPD Hilbert t-SNE 2D manifold figure data
  • 相关文献

参考文献8

二级参考文献103

  • 1王庆刚,李见为,胥勋涛.一种新的基于有区别方差分析的流形学习算法[J].光电子.激光,2009,20(8):1096-1100. 被引量:1
  • 2张含蕾,周洁敏,李刚.基于小波分析的感应电动机复合故障诊断[J].中国电机工程学报,2006,26(8):159-162. 被引量:34
  • 3程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1997..
  • 4陈高曙,曾庆宁.基于LLE算法的人脸识别方法[J].计算机应用研究,2007,24(10):176-177. 被引量:12
  • 5葛哲学,沙威.小波分析理论与MATLABR2007实现[M].南京:电子工业出版社,2007:456-472.
  • 6吴伟力.小波分析理论在旋转机械故障诊断中的应用[C].株洲:湖南省航空学会,2004:227-235.
  • 7PAN X, RUAN Q Q, Palmprint recognition with improved two-dimensional locality preserving projections [ J ]. Image and Vision Computing,2008,26(9) :1261-1268.
  • 8SHAO J D, RONG G. Nonlinear process monitoring based on maximum variance unfolding projections [ J ]. Expert Systems with Applications,2009,36 ( 8 ) : 11332-11340.
  • 9WEINBERGER K Q,SHA F,SAUL L K. Learning a ker-nel matrix for nonlinear dimensionality reduction [ C ]. Proceedings of the 21st international conference on Ma- chine learning ,2004 : 106-113.
  • 10TAX D M J, DUIN R P W. Support vector domain de- scription[ J]. Machine Learning,2004,54( 1 ) :45-66.

共引文献134

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部