期刊文献+

基于细粒度的光片上网络MRR制程漂移容错研究 被引量:4

Study on fine-grain based fault tolerance of MRR process variation in photonic network on chip
下载PDF
导出
摘要 光片上网络是片上网络发展的新方向,微环谐振器是光片上网络中的关键器件,然而由于微环谐振器对制程漂移较为敏感、极易发生故障,如何对制程漂移造成的微环谐振器故障进行容错是提高光片上网络可靠性的关键。针对该问题提出了一种细粒度的微环谐振器制程漂移容错方法,建立微环谐振器制程漂移模型,采用基于樽海鞘群算法的微环谐振器制程漂移容错方法,并结合多策略的冗余微环谐振器进行容错。实验结果证明,所提方法相比整数线性规划等方法,可以最高提高21%的带宽和减少66.7%的调整功耗,证明了所提方法的有效性。 Photonic network-on-chip(PNoC)has been a new trend for next generation network-on-chip development.Microring resonator is the key component in PNoC.However,microring resonators are sensitive to process variation and prone to fault.Therefore,how to tolerant the microring resonator fault due to process variation is a key problem to improve the reliability of PNoC.Aiming at this problem,a fine-grain based tolerance method of microring resonator process variation is proposed.Firstly,the model of microring resonator process variation was built;then,a tolerance method of microring resonator process variation based on salp swarm algorithm was proposed;finally,the tolerance of a multi-strategy redundant microring resonator was conducted.The experiment results indicate that compared with integer linear programming method,the proposed approach increases the bandwidth by 21%and decreases the trimming power consumption by 66.7%,which proves the effectiveness of the proposed approach.
作者 朱爱军 赵春霞 胡聪 许川佩 李智 Zhu Aijun;Zhao Chunxia;Hu Cong;Xu Chuanpei;Li Zhi(School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541004,China;Guangxi Key Laboratory of Automatic Detecting Technology and Instruments,Guilin 541004,China;Guilin University of Aerospace Technology,Guilin 541004,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第2期249-256,共8页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61861012 61561012) 广西自然科学基金联合资助培育项目(2018GXNSFAA138115) 广西自然科学基金(2017GXNSFAA198021 2015GXNSFDA139030) 广西自动检测技术与仪器重点实验室基金(YQ19101) 广西中青年教师基础能力提升项目(2017KY0210)资助
关键词 制程漂移 容错 微环谐振器 process variation fault tolerance microring resonator(MRR)
  • 相关文献

参考文献7

二级参考文献67

  • 1马敏,陈光,陈东义.基于Petri网和模拟退火遗传算法的并行测试研究[J].仪器仪表学报,2007,28(2):331-336. 被引量:25
  • 2STORN R, PRICE K. Differential Evolution--A Simple and Efficient Heuristic for Global optimization over Continuous Spaces. Journal of Global ptimization, 1997,11 (4) :341 - 359.
  • 3IYENGAR V, CHAKRABARTY K, MARINISSEN E J. Test Wrapper and test access mechanism co-optimization for system-on-chip. Journal of Electronic testing: Theory and Application, 2002, 18 ( 2 ) : 213 - 230.
  • 4NIU D H, WANG H, YANG S Y, et al. Re - optimization algorithm for SoC Wrapper - chain balance using mean - value approximation. Tsin- ghua Science and Technology,2007,12( S1 ) :61 -66.
  • 5MARINISSEN E J, IYENGAR V, CHAKRABARTY K. A set of bench- marks for modular testing of SOCs. International Test Conference, 2002:519 - 528.
  • 6DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi - ob- jective genetic algorithm NSGA - II. IEEE Transactions on Evolution- ary Computation,2002,6 (2) : 182 - 197.
  • 7S. Mirjalili, S. M. Mirjalili, A. Lewis. Grey wolf optimizer. Advances in Engineering Software, 2014, 69(3): 46- 61.
  • 8E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm intelligence: from natural to artificial systems. New York: Oxford Univer- sity Press, 1999.
  • 9J. Kennedy, R. Eberhart. Particle swarm optimization. Proc. of the lEEE hternational Conference on Neural Networks, 1995: 1942- 1948.
  • 10R. Storn, K. Price. Differential evolution-a simple and effi- cient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11 (4): 341 - 359.

共引文献111

同被引文献19

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部