期刊文献+

线性无关高阶数值流形法在断裂力学中的应用 被引量:4

APPLICATION OF THE LINEARLY INDEPENDENT HIGH-ORDER NUMERICAL MANIFOLD METHOD IN FRACTURE MECHANICS
原文传递
导出
摘要 数值流形方法(NMM)实现了对连续和非连续问题的统一求解,非常适合应用于求解断裂力学问题。但传统高阶NMM,例如采用一次多项式作为其局部位移函数时,存在线性相关问题,这又在一定程度上限制了NMM的进一步发展和应用。因此,通过在物理片上引入一种新的局部位移函数以及用于模拟裂纹尖端应力场奇异性的位移函数,建立新的NMM求解体系,尝试消除线性相关问题和求解线弹性断裂力学问题。数值算例结果表明:(1)该方法有效地解决了线性相关问题。(2)对于典型的线弹性断裂力学问题,即便在网格密度较小时也能够精确地计算出裂纹尖端的应力强度因子。(3)研究区域内插值点处的应力是连续的。(4)定义在非奇异物理片上自由度具有明确的物理含义,且第3到5个自由度恰好是所对应插值点处的应变分量,可直接获得此处的应力,减少了计算量。最后,所建议方法可以很容易地推广到其他基于单位分解理论的方法中。 The numerical manifold method(NMM) has succeeded in providing a unified solution to continuum and discontinuum problems and therefore it is highly suitable for solving fracture mechanics problems. However, the conventional high-order NMM using the first order polynomial as the local displacement function has the problem of linear dependence, which restricts to a certain degree its further development and application. A new NMM framework was established in this research by introducing a new localized displacement function, as well as a special displacement function for modeling the stress singularity around crack tips. A new paradigm that eliminates the problem of linear dependence is then derived to solve linear elastic fracture mechanics problems. The numerical examples show that: (1) The proposed method successfully eliminates the problem of linear dependence;(2) For classic linear elastic fracture problems, the stress intensity factors at the crack tip can be calculated accurately even if the mesh is relatively sparse;(3) The stress function at interpolation points inside the physical domain is continuous;(4) All the degrees of freedom defined on non-singular physical patches are physically meaningful, with the third to the fifth being the strain components at the interpolation point of the patch. As a result, the stress components at the interpolation point can be directly obtained. Finally, the proposed approach can be easily extended to other methods based on the theory of the partition of unity. © 2015, Science Press. All right reserved.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2015年第12期2463-2473,共11页 Chinese Journal of Rock Mechanics and Engineering
基金 国家自然科学基金资助项目(11172313 51179014 2011CB710603)~~
关键词 数值模拟 数值流形法 数学片 数学覆盖 物理片 物理覆盖 线性相关 节点力连续 Brittle fracture Computer simulation Crack propagation Crack tips Cracks Degrees of freedom (mechanics) Fracture Fracture mechanics Interpolation Mechanics Numerical methods Numerical models
  • 相关文献

参考文献46

  • 1Cundall PA.The measurement and analysis of acceleration in rock slopes. . 1971
  • 2Cundall P A.A computer model for simulating progressive large-scale movements in block rock systems. Proceedings of the International Symposium on Rock Fracture . 1971
  • 3Belytschko T,Lu YY,Gu L.Element-free Galerkin methods. International Journal for Numerical Methods in Engineering . 1994
  • 4T. Belytschko,Y. Krongauz,D. Organ,M. Fleming,P. Krysl.??Meshless methods: An overview and recent developments(J)Computer Methods in Applied Mechanics and Engineering . 1996 (1)
  • 5The generalized finite element method: an example of its implementation and illustration of its performance(J)Int. J. Numer. Meth. Engng. . 2000 (8)
  • 6C.A. Duarte,O.N. Hamzeh,T.J. Liszka,W.W. Tworzydlo.??A generalized finite element method for the simulation of three-dimensional dynamic crack propagation(J)Computer Methods in Applied Mechanics and Engineering . 2001 (15)
  • 7Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update(J)Int. J. Numer. Meth. Engng. . 2002 (11)
  • 8Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model(J)Int. J. Numer. Meth. Engng. . 2002 (11)
  • 9王水林,葛修润.流形元方法在模拟裂纹扩展中的应用[J].岩石力学与工程学报,1997,16(5):405-410. 被引量:116
  • 10姜清辉,周创兵.四面体有限单元覆盖的三维数值流形方法[J].岩石力学与工程学报,2005,24(24):4455-4460. 被引量:18

二级参考文献162

共引文献269

同被引文献19

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部