期刊文献+

基于无人驾驶车数据的快速路排队长度实时检测方法

Real-time Queue Length Detection Method of Expressway Based on Autonomous Vehicles Data
原文传递
导出
摘要 交通拥堵是造成城市交通延误和运输资源浪费的重要原因。为了实时有效的对交通拥堵现象进行检测及预测,本文搭建了一套基于无人驾驶车数据的快速路排队长度实时检测系统。针对交通拥堵中的交通流现象和特点,本文基于无人驾驶车采集数据的特点,应用交通波理论,提出基于斜率法和LWR交通流模型法的两种方法对交通波波速进行估计,进而对排队长度的实时检测,最后使用NGSIM数据集对该系统进行验证。结果表明,基于LWR交通流模型法的方法二估计结果更接近于真实值,且无人驾驶车比例越高,估计结果越准确。实验证明该系统具有实时性、高效性和准确性的优点。 Traffic congestion is an important cause of urban traffic delays and waste of transportation resources.In order to detect and predict the queue length in real time,a queue profile estimation system on freeways is investigated based on data collected by autonomous vehicles.By applying the traffic wave theory,two methods are proposed to estimate the shockwave speed according to the characteristics of data collected by autonomous vehicles and traffic flow theory,which is then used for the measurement of queue profile.A set of NGSIM data are utilized to evaluate the performance of the proposed system.The results show that the second method has a better performance.And the higher penetration of drive-less vehicle used,the more accurate the estimation result.The results demonstrate that the proposed system is applicable for real-time queue profile estimation.
作者 范翘楚 曹鹏 FAN Qiaochu;CAO Peng(School of transportation and logistics,Southwest Jiaotong University,Chengdu 611756 Sichuan,China)
出处 《综合运输》 2019年第2期54-59,共6页 China Transportation Review
关键词 交通拥堵 排队长度估计 交通波 交通流理论 无人驾驶车 Traffic congestion Queue length estimation Shockwave Traffic flow theory Autonomous vehicle
  • 相关文献

参考文献3

二级参考文献4

  • 1夏良正.数字图像处理[M].南京:东南大学出版社,1999.43-83.
  • 2Gian Luca Foresti,Vittorio Murino.Vehicle Recognition and Tracking from Road Image Sequences[J].IEEE Transactions on Vehicular Technology,Jan.1999,311-318.
  • 3Dong-Chen He,Li Wang.Texture Unit,Texture Spectrum,and Texture Analysis[J].IEEE Trans on GRS,1990,28(4):509-512.
  • 4熊英格,徐卓立,刘好德.基于浮动车数据的交叉口范围动态划分方法[J].交通信息与安全,2009,27(5):38-43. 被引量:8

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部