期刊文献+

钢管混凝土单圆管肋拱非线性有限元分析 被引量:2

Nonlinear finite element analysis of concrete-filled steel tubular (single tube) rib arch
下载PDF
导出
摘要 提出考虑材料与几何双重非线性的钢管混凝土肋拱面内受力的计算方法并编制了有限元程序。有限元建模时采用空间梁单元。材料非线性应用合成法钢管混凝土本构关系。双重非线性采用采用混合法。应用该方法对钢管混凝土模型肋拱的受力全过程进行了分析。计算结果与试验结果比较表明 ,该程序能够反映钢管混凝土肋拱受力全过程的基本特性 ,但在受力的后期有一定的误差 ,表明钢管混凝土肋拱中的材料本构关系有其自身的特点 。 A method is presented to analyze the behavior of concrete-filled steel tubular (CFST) arch, which considers the material and geometric nonlinear property, and a finite element program. In the program, beam element and combined CFST constitutive are used. The method of solution used is that of the mixed procedure (incremental method + modified Newton iteration). Using this method, two CFST model arches are analyzed. Comparisons of numerical results with the test results indicate that, this program can get out the basic mechanic behaviors of the CFST arch on the whole loading progress. However, there is some difference in the final phase which indicates that the material constitutive of the CFST arch has itself property and should be studied more in the further.
出处 《湘潭师范学院学报(自然科学版)》 2003年第4期91-94,共4页 Journal of Xiangtan Normal University (Natural Science Edition)
基金 福州大学科技发展基金研究项目 (XKJ(YM) -0 113 )
关键词 单圆管肋拱 非线性有限元分析 材料 钢管混凝土拱桥 受力性能 concrete-filled steel tube arch material geometric nonlinear in-plane finite element
  • 相关文献

参考文献5

二级参考文献11

共引文献91

同被引文献17

  • 1陈宝春,黄福云,盛叶.钢管混凝土哑铃形短柱轴压试验研究[J].工程力学,2005,22(1):187-194. 被引量:33
  • 2蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003..
  • 3JTG D62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004.
  • 4Morris G A, Fenves S J. Elastic-plastic analysis of frameworks [J]. Journal of the Structural Division, 1970, 96(5): 931 -946.
  • 5Attalla M R, Deierlein G G, McGuire W. Spread of plasticity: Quasi-plastic-hinge approach [J]. Journal of the Structural Division, 1994, 120(8): 2451 -2473.
  • 6Yamato Engineering Inc. Manual of Y-Fiber3D [M]. Japan: Yamato Engineering Inc, 2002.
  • 7Chen W F, Atsuta T. Theory of beam-columns, Vol.2: Space behaviors and design [M]. USA: McGraw-Hill International Book Company, 1977.
  • 8Ziegler H. A modification of prager's hardening rule [J]. Quarterly of Applied Mathematics, 1959, 17(1): 55-65.
  • 9Ristic D, Yamada Y, Iemura H. Stress-strain based modeling of hysteretic structures under earthquake induced bending and varying axial loads [D]. Japan: School of Civil Engineering, Kyoto University, 1986.
  • 10Yang Y B, Shieh M S. Solution method for nonlinear problems with multiple critical points [J]. AIAA Journal, 1990, 28(12): 2110-2116.

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部