期刊文献+

考虑结构面间距的双因素分组方法研究 被引量:1

Double-factor clustering method considering spacing of discontinuities
下载PDF
导出
摘要 同一期地质运动中岩体所产生的结构面间距一般认为服从负指数分布。目前方法多根据产状单一因素进行分组,分组完成后同一组结构面的间距分布可能非常不规则,针对该问题,结合目前结构面采集到的数据质量高且具有空间位置等特点,提出一种新的双因素分组方法 (a new double-factor clustering method,NDCM)。分组时可综合考虑结构面产状与间距信息,该方法分组初值由模糊K均值法(fuzzy K-means)获取,通过调整隶属度较低的结构面分组编码达到修正结构面间距,使其满足负指数分布的目的。为获得NDCM的分组精度,进行了数值模型计算,该模型中结构面分组情况已知,利用模糊K均值法和NDCM法分别对此模型进行结构面分组。对比结果表明,NDCM法分组精度明显优于模糊K均值分组方法;重叠率越高组数越多这种优势越明显;相比于模糊K均值法,NDCM分组精度平均可以提升0.06左右。 Spacing of discontinuities formed in the same tectonic stage is believed to obey a negative exponential distribution. Single factor clustering method according to orientation is most commonly used. However, the probability density function of spacing in one set of discontinuities clustered only based on orientation may be irregular, even exhibiting no rules. To overcome the deficiency, this study proposeds a new double-factor clustering method(NDCM), considering spacing distribution and orientation of discontinuities during clustering. The initial clustering result and membership values are obtained based on the fuzzy K-means. Through redistribution of the discontinuities whose membership values are low, this method adjusts the probability density function of spacing to make it more closely obey a negative exponential distribution. To obtain the clustering precision of NDCM, a numerical model calculation which contained two and three discontinuity sets has been made and the correct set code of every discontinuity were known. The model has been calculated by the two methods. Comparison results show that NDCM has an obvious advantage over fuzzy K means in clustering precision. About 6% promotion occurs in precision clustered by NDCM compared with fuzzy K means.
出处 《岩土力学》 EI CAS CSCD 北大核心 2017年第S1期219-224,共6页 Rock and Soil Mechanics
基金 国家重点研发计划(No.2016YFC0600702)~~
关键词 结构面 分组 间距 产状 discontinuity clustering spacing orientation
  • 相关文献

参考文献3

二级参考文献32

  • 1刘健庄,谢维信,黄建军,李文化.聚类分析的遗传算法方法[J].电子学报,1995,23(11):81-83. 被引量:27
  • 2于青春,薛果夫,陈德基.裂隙岩体一般块体理论[M].北京:中国水利水电出版社,2006.
  • 3邓之录,梁之舜.随机点过程及其应用[M].北京:科学出版社,1998:36-37.
  • 4BAECHER G B, LANNEY N A, EINSTEIN H H. Statistical description of rock properties and sampling[C]// Proceedings of the 18th U.S. Symposium on Rock Mechanics. Colorado: Colorado School of Mines Press, 1977.
  • 5ROBERTSON A. The interpretation of geologic factors for use in slope theory[C]//Proceedings of Symposium on the Theoretical Background to the Planning of Open Pit Mines, Johannesburg, South Africa: [s. n.], 1970.
  • 6BARTON C M. Geotechnical analysis of rock structure and fabric in CSA Mine NSW[C]//Applied Geomechanics Technical Paper 24, Common Wealth Scientific and Industrial Research Organization. Australia: [s. n.], 1977.
  • 7WARBURTON P M. A stereological interpretation of joint trace data[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1980, 17(4): 181 - 190.
  • 8DERSHOWITZ W S, EINSTEIN H H. Characterizing rock joint geometry with joint system models[J]. Rock Mechanics and Rock Engineering, 1988, 21(1): 21 -51.
  • 9SONG J J, LEE C 1. Estimation of joint length distribution using window sampling[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(4): 519-528.
  • 10SONG J J. Estimation of a joint diameter distribution byan implicit scheme and interpolation technique[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(4): 512-519.

共引文献50

同被引文献4

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部