摘要
Objective: To identify the chemical constituents of leaf essential oil of Forsythia koreana(F. koreana) and evaluate its ef ects on bacterial strains. Methods: The essential oil of leaf of F. koreana was extracted by using hydrodistillation process and the volatile components investigated with the help of gas chromatography coupled with mass spectrometry. The antibacterial study was carried out with the help of agar disc dif usion method, MIC, MBC and viable count. The mode of action was determined with help of potassium ion l ux, cellular material release and scanning electron microscopy. The antioxidant activity was determined with the help of 2, 3-diphenyl-2-picrylhydrazyl method, nitric oxide scavenging activity and superoxide anion radical scavenging assay. Results: Total ten compounds were identii ed as trans-phytol(42.73%), cis-3-hexenol(12.95%), 毬-linalool(10.68%), trans-2-hexenal(8.86%), trans-2-hexenol(8.86%), myrcenol(3.86%), 4-vinylphenyl acetate(3.86%),(4Z)-4,6-heptadien-1-ol(3.18%), lemonol(2.73%) and benzeneacetaldehyde(2.27%) by gas chromatography coupled with mass spectrometry. The antibacterial study was demonstrated that leaf essential oil of F. koreana act against foodborne and other pathogenic bacteria. The mode of action revealed that this essential oil acted on the cytoplasmic membrane, resulting in loss of integrity and increased permeability. In addition, leaf essential oil of F. koreana was shown to be rich in linalool, which contributes to improved antioxidant activity. Conclusions: These results show that leaf essential oil of F. koreana has great potential as a natural food preservative, antibacterial and antioxidant agent.
Objective: To identify the chemical constituents of leaf essential oil of Forsythia koreana(F. koreana) and evaluate its ef ects on bacterial strains. Methods: The essential oil of leaf of F. koreana was extracted by using hydrodistillation process and the volatile components investigated with the help of gas chromatography coupled with mass spectrometry. The antibacterial study was carried out with the help of agar disc dif usion method, MIC, MBC and viable count. The mode of action was determined with help of potassium ion l ux, cellular material release and scanning electron microscopy. The antioxidant activity was determined with the help of 2, 3-diphenyl-2-picrylhydrazyl method, nitric oxide scavenging activity and superoxide anion radical scavenging assay. Results: Total ten compounds were identii ed as trans-phytol(42.73%), cis-3-hexenol(12.95%), 毬-linalool(10.68%), trans-2-hexenal(8.86%), trans-2-hexenol(8.86%), myrcenol(3.86%), 4-vinylphenyl acetate(3.86%),(4Z)-4,6-heptadien-1-ol(3.18%), lemonol(2.73%) and benzeneacetaldehyde(2.27%) by gas chromatography coupled with mass spectrometry. The antibacterial study was demonstrated that leaf essential oil of F. koreana act against foodborne and other pathogenic bacteria. The mode of action revealed that this essential oil acted on the cytoplasmic membrane, resulting in loss of integrity and increased permeability. In addition, leaf essential oil of F. koreana was shown to be rich in linalool, which contributes to improved antioxidant activity. Conclusions: These results show that leaf essential oil of F. koreana has great potential as a natural food preservative, antibacterial and antioxidant agent.