摘要
Objective: To evaluate the effects of Pasteurella multocida(P. multocida) vaccines on the expression and release of antibodies, interleukin(IL)-6 and IL-12 by serum. Methods: Balb/c mice were immunized with two formalin and iron inactivated vaccine doses within 2 weeks. The vaccines were adjuvant with P. multocida A strain, P. multocida B strain and Salmonella typhimurium bacterial DNA(AbDNA, BbDNA and SbDNA for short, respectively). The animals were challenged 4 weeks after immunization. Blood of mice was collected to detect the change of specific antibody, IL-6, and IL-12 using ELISA. Results: The specific antibody and interleukins in the immunized group increased significantly compared to the control mice after vaccination and challenge(P<0.05). The highest release of these cytokines was obtained by P.multocida inactivated with iron and adjuvant with AbDNA at a concentration of 25 μg/mL. The antibody titer peak was 0.447 in mice vaccinated with iron-killed whole-cell antigen adjunct with AbDNA. The time-courses of release showed that bacterial DNA was able to stimulate IL-6 and IL-12 production more than alum(P<0.05). Conclusions: Our findings introduce that bacterial DNA is capable of releasing an immunological response with several cytokines.These indicate that bacterial DNA entrapped with killed P. multocida antigen is a new and effective adjuvant to enhance specific immunity and resistance of animal against the infectious pathogen, which could simplify the development of highly promising strong adjuvant.
Objective: To evaluate the effects of Pasteurella multocida(P. multocida) vaccines on the expression and release of antibodies, interleukin(IL)-6 and IL-12 by serum. Methods: Balb/c mice were immunized with two formalin and iron inactivated vaccine doses within 2 weeks. The vaccines were adjuvant with P. multocida A strain, P. multocida B strain and Salmonella typhimurium bacterial DNA(AbDNA, BbDNA and SbDNA for short, respectively). The animals were challenged 4 weeks after immunization. Blood of mice was collected to detect the change of specific antibody, IL-6, and IL-12 using ELISA. Results: The specific antibody and interleukins in the immunized group increased significantly compared to the control mice after vaccination and challenge(P<0.05). The highest release of these cytokines was obtained by P.multocida inactivated with iron and adjuvant with AbDNA at a concentration of 25 μg/mL. The antibody titer peak was 0.447 in mice vaccinated with iron-killed whole-cell antigen adjunct with AbDNA. The time-courses of release showed that bacterial DNA was able to stimulate IL-6 and IL-12 production more than alum(P<0.05). Conclusions: Our findings introduce that bacterial DNA is capable of releasing an immunological response with several cytokines.These indicate that bacterial DNA entrapped with killed P. multocida antigen is a new and effective adjuvant to enhance specific immunity and resistance of animal against the infectious pathogen, which could simplify the development of highly promising strong adjuvant.
基金
part of the project:Study on immune response pattern of cattle vaccinated by Razi pasteurellosis vaccine(Project number:12-18-18-9458-94014)