期刊文献+

Pouteria campechiana leaf extract and its bioactive compound myricitrin are mosquitocidal against Aedes aegypti and Culex quinquefasciatus

Pouteria campechiana leaf extract and its bioactive compound myricitrin are mosquitocidal against Aedes aegypti and Culex quinquefasciatus
下载PDF
导出
摘要 Objective: To test the mosquitocidal potential of leaf extracts of Pouteria campechiana prepared with different solvents and elucidate the structure of an isolated mosquitocidal compound. Methods: The leaf extracts of Pouteria campechiana prepared with three solvents(petroleum benzene, ethyl acetate and acetone) and potential bioactive fractions were tested against various stages of Aedes aegypti and Culex quinquefasciatus by using the WHO protocols, and the chemical profile and its functional groups were identified by GC-MS and Fourier transmissioninfrared spectroscopy(FT-IR). The structure of bioactive compound was characterized by nuclear magnetic resonance(NMR) spectral technique. Results: The preliminary phytochemical results revealed the presence of alkaloids, amino acids, flavonoids, quinones, saponins, steroids, tannins, and terpenoids in the acetone extract. A significant toxic potential was observed in the acetone extract against both Aedes aegypti and Culex quinquefasciatus mosquitoes. The acetone extract exhibits remarkable larvicidal(LC50: 12.232 μg/mL and LC90: 63.970 μg/mL), pupicidal(LC50: 18.949 μg/mL and LC90: 167.669 μg/m L) and adulticidal(LC50: 20.689 μg/mL and LC90: 72.881 μg/mL) effects against Aedes aegypti. Furthermore, the same extract was subjected to isolation of bioactive compound by GCMS and FT-IR analysis. GC-MS results showed the presence of 5 major compounds, and octacosane(18.440%) was detected as the predominant compound. The FT-IR result of acetone extract demonstrated the presence of various functional groups like alkanes/alkynes, ester, aromatic and amides. The NMR spectrum results of isolated compound were well matched to glycoside linked flavonoids. Based on the chromatography and spectral techniques the isolate molecule was identified as myricitrin by FT-IR and nuclear magnetic resonance spectral data. Conclusion: The isolated compound myricitrin possesses a significant toxic effect in all stages of Aedes aegypti and Culex quinquefasciatus mosquito’s with lowest LC50 and LC90 values. Objective: To test the mosquitocidal potential of leaf extracts of Pouteria campechiana prepared with different solvents and elucidate the structure of an isolated mosquitocidal compound. Methods: The leaf extracts of Pouteria campechiana prepared with three solvents(petroleum benzene, ethyl acetate and acetone) and potential bioactive fractions were tested against various stages of Aedes aegypti and Culex quinquefasciatus by using the WHO protocols, and the chemical profile and its functional groups were identified by GC-MS and Fourier transmissioninfrared spectroscopy(FT-IR). The structure of bioactive compound was characterized by nuclear magnetic resonance(NMR) spectral technique. Results: The preliminary phytochemical results revealed the presence of alkaloids, amino acids, flavonoids, quinones, saponins, steroids, tannins, and terpenoids in the acetone extract. A significant toxic potential was observed in the acetone extract against both Aedes aegypti and Culex quinquefasciatus mosquitoes. The acetone extract exhibits remarkable larvicidal(LC50: 12.232 μg/mL and LC90: 63.970 μg/mL), pupicidal(LC50: 18.949 μg/mL and LC90: 167.669 μg/m L) and adulticidal(LC50: 20.689 μg/mL and LC90: 72.881 μg/mL) effects against Aedes aegypti. Furthermore, the same extract was subjected to isolation of bioactive compound by GCMS and FT-IR analysis. GC-MS results showed the presence of 5 major compounds, and octacosane(18.440%) was detected as the predominant compound. The FT-IR result of acetone extract demonstrated the presence of various functional groups like alkanes/alkynes, ester, aromatic and amides. The NMR spectrum results of isolated compound were well matched to glycoside linked flavonoids. Based on the chromatography and spectral techniques the isolate molecule was identified as myricitrin by FT-IR and nuclear magnetic resonance spectral data. Conclusion: The isolated compound myricitrin possesses a significant toxic effect in all stages of Aedes aegypti and Culex quinquefasciatus mosquito’s with lowest LC50 and LC90 values.
出处 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2019年第7期321-328,共8页 亚太热带医药杂志(英文版)
关键词 Pouteria campechiana MYRICITRIN AEDES aegypti CULEX quinquefasciatus Mosquitocidal Pouteria campechiana Myricitrin Aedes aegypti Culex quinquefasciatus Mosquitocidal
  • 相关文献

参考文献6

二级参考文献48

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部