期刊文献+

氧钝化圆形孔缺陷石墨烯的电学特性

Electrical Properties of Oxidation-Passivated Graphene Sheets with Circular Nanohole Defects
下载PDF
导出
摘要 基于第一性原理方法,计算了氧钝化圆形孔缺陷石墨烯的电磁学特性.根据缺陷碳原子数目(Cn)的不同,圆形孔缺陷石墨烯呈现出了锯齿型(扶手椅型)边界,并且具有反铁磁(顺磁)基态,所有的圆形孔缺陷石墨烯都显现出了半导体性质.氧钝化的孔缺陷石墨烯均是半导体,而且呈现出了多样性的几何结构.研究发现,与氢钝化圆形孔缺陷石墨烯不同,氧钝化圆形孔缺陷石墨烯存在着更稳定的非平面结构.非平面结构的C6+O与C12+O展现出了半导体性质,而C24+O展现出了导体性质.研究表明:氧原子可以用于调节孔缺陷石墨烯的导电性质,并且为石墨烯孔结构器件设计提供有价值的理论指导. Based on a first-principles approach, the electronic and magnetic properties of oxygen-passivated gra-phene sheets with circular nanohole defects are investigated. Depending on the number of the carbon atom (Cn) in defect, graphene nanoholes show zigzag ( armchair) shaped edge with anti-ferromagnetic ( paramagnetic) ground state, and all the graphene nanoholes are semiconductor. The results show that oxygen-passivated graphene nano-holes belong to semiconductor materials and have a rich geometrical structure. Unlike hydrogen-passivated graphene nanoholes, the oxygen-passivated graphene nanoholes can attain a lower energy configuration by adopting a nonpla-nar geometry. The nonplanar structures of C6+O and C12+O are semiconductor, however, the nonplanar structures of C24+O become a conductor. Our works suggest that oxygen atom could be used to manipulate the electronic struc-tures of graphene nanoholes and supply a valuable theoretical guidance for graphene-based electronic device design.
出处 《烟台大学学报(自然科学与工程版)》 CAS 2014年第3期161-166,共6页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 教育部新世纪优秀人才支持计划(NCET-09-0867)
关键词 石墨烯 第一性原理 纳米孔缺陷 电学特性 graphene first principle nanohole defect electrical propertiy
  • 相关文献

参考文献3

二级参考文献93

  • 1Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y and Dubonos S V 2004 Science 306 666.
  • 2C)zyilmaz B, Herrero P J, Efetov D, Abanin D A, Levitov L S and Kim P 2007 Phys. Rev. Lett. 99 166804.
  • 3Siegel D A, Zhou S Y, Gabaly F E, Fedorov A V, Schmid A K and Lanzara A 2008 Appl. Phys. Lett. 93 243119.
  • 4Berger C, Song Z, Li X, Wu X, Brown N, N aud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E N, First P N and de Heer W A 2006 Science 312 1191.
  • 5Wu Y Q, Ye P D, Capano M A, Xuan Y, Sui Y and Qi M 2008 Appl. Phys. Lett. 92 092102.
  • 6Lemme M C, Echtermeyer T J, Baus M and Kurz H 2007 IEEE Electron Device Lett. 28 282.
  • 7Chen Z H, Lin Y M, Rooks M J and Avouris P 2007 Phys- ica E 40 228.
  • 8Han M Y, Ozyilmaz B, Zhang Y B and Kim P 2007 Phys. Rev. Lett. 98 206805.
  • 9Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 954.
  • 10Wakabayashi K and Hiroshima H 2001 Phys. Rev. B 64 125428.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部