期刊文献+

基于正交实验的BP神经网络预测研究 被引量:8

Research on the Forecast of the BP Neural Network Based on the Orthogonal Test
下载PDF
导出
摘要 用不同的L9(34)正交实验方案结果作为训练学习样本集 ,对BP神经网络预测应用过程的策略进行了探讨 ,结果表明 :完备的正交实验样本集是基本训练学习单元 ,在完备的正交实验样本集上添加或减少样本数量 ,所预测的结果是不可靠的 ;在同一类型、同一实验的条件下 ,完备的信息量大的正交实验样本集 ,能以很高的精度预测完备的信息量小的正交实验样本集 ;提出了一条新的实验设计思路———通过实验得出一个完备的正交实验样本集 ,通过计算机用BP神经网络就可以把与已知样本集有相同影响因素和水平的所有样本的值以相当高的精度预测出来 。 The strategy for forecasting the BP neural network was researched on the basis of the training studying samples that were obtained in the orthogonal test of L 9(3 4). The self\|contained orthogonal sample was the basic training and studying cell. When others samples were added into the self\|contained orthogonal samples or the self\|contained orthogonal samples were cut down, the forecasting results were completely irresponsible. On the same test condition and orthogonal test type, the self\|contained orthogonal sample with large information content could forecast that with small information content at high precision. A new test\|design approach was put forward. Namely, the self\|contained orthogonal sample was obtained through the orthogonal test, and then, the values of all other samples whose factors were the same as that of the self\|contained orthogonal sample could be forecast in the BP neural network and its precision was considerable high. Therefore, the time and labors were enormously saved. [
机构地区 东南大学机械系
出处 《中国工程科学》 2003年第7期67-71,共5页 Strategic Study of CAE
基金 国家自然科学基金资助项目 ( 5 99740 11)
关键词 BP神经网络 正交实验 策略 实验设计思路 样本集 BP neural network orthogonal test strategy design\|test approach sample collection
  • 相关文献

参考文献5

二级参考文献13

  • 1焦李成.神经网络的应用与实现[M].西安电子科技大学出版社,1995..
  • 2骆梅青
  • 3Clarke D W,Mohtadi C,Tuffs P S.Generalized predictive control: part 1 and part 2[J].Automatic,1987,23(2): 137~161
  • 4Kumpati S N,Kanna P.Identification and control of dynamical system using neural networks [J].IEEE Trans on Neural Networks,1990,(1): 4~27
  • 5Kzzyyzak A.Nonparametric estimation and classification using radial basis function nets and empirical risk minimization [J].IEEE NN,1996,7 (2): 475~487
  • 6Pantazopoulos K,Tsoukalas L H,Bourbakis N.Financial prediction and trading strategies using neurofuzzy approaches [J].IEEE SME (part B),1998,28 (4): 520~531
  • 7刘在德.基于遗传算法的铸件缺陷诊断神经网络模型的研究[M].兰州:甘肃工业大学,2001..
  • 8王昌龙,刘满平,蒋心慧,陆宗仪.集装箱角件材料及其热处理[J].金属热处理,1998,23(1):47-49. 被引量:3
  • 9郗学奎,郝启堂,陈洪升.铸造缺陷数据库系统的建立[J].铸造设备研究,1998(1):50-52. 被引量:6
  • 10尹红风,戴汝为.人工神经元网络信息处理原理[J].模式识别与人工智能,1990,3(1):1-13. 被引量:53

共引文献5

同被引文献59

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部