期刊文献+

In vivo retention of poloxamer-based in situhydrogels for vaginal application in mouse and rat models 被引量:5

In vivo retention of poloxamer-based in situhydrogels for vaginal application in mouse and rat models
原文传递
导出
摘要 The purpose of this study is to evaluate the in vivo retention capabilities of poloxamer-based in situ hydrogels for vaginal application with nonoxinol-9 as the model drug. Two in situ hydrogel formulations, which contained 18% poloxamer 407 plus 1% poloxamer 188 (GEL1, relative hydrophobic) or 6% poloxamer 188 (GEL2, relative hydrophilic), were compared with respect to the rheological properties, in vitro hydrogel erosion and drug release. The vaginal retention capabilities of these hydrogel formulations were further determined in two small animal models, including drug quantitation of vaginal rinsing fluid in mice and isotope tracing with <sup>99m</sup>Tc in rats. The two formulations exhibited similar phase transition temperatures ranging from 27 to 32 °C. Increasing the content of poloxamer 188 resulted in higher rheological moduli under body temperature, but slightly accelerated hydrogel erosion and drug release. When compared in vivo, GEL1 was eliminated significantly slower in rat vagina than GEL2, while the vaginal retention of these two hydrogel formulations behaved similarly in mice. In conclusion, increases in the hydrophilic content of formulations led to faster hydrogel erosion, drug release and intravaginal elimination. Rats appear to be a better animal model than mice to evaluate the in situ hydrogel for vaginal application. The purpose of this study is to evaluate the in vivo retention capabilities of poloxamer-based in situ hydrogels for vaginal application with nonoxinol-9 as the model drug. Two in situ hydrogel formulations, which contained 18% poloxamer 407 plus 1% poloxamer 188(GEL1, relative hydrophobic)or 6% poloxamer 188(GEL2, relative hydrophilic), were compared with respect to the rheological properties, in vitro hydrogel erosion and drug release. The vaginal retention capabilities of these hydrogel formulations were further determined in two small animal models, including drug quantitation of vaginal rinsing fluid in mice and isotope tracing with99 m Tc in rats. The two formulations exhibited similar phase transition temperatures ranging from 27 to 32 1C. Increasing the content of poloxamer 188 resulted in higher rheological moduli under body temperature, but slightly accelerated hydrogel erosion and drug release. When compared in vivo, GEL1 was eliminated significantly slower in rat vagina than GEL2,while the vaginal retention of these two hydrogel formulations behaved similarly in mice. In conclusion,increases in the hydrophilic content of formulations led to faster hydrogel erosion, drug release andintravaginal elimination. Rats appear to be a better animal model than mice to evaluate the in situ hydrogel for vaginal application.
出处 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2017年第4期502-509,共8页 药学学报(英文版)
基金 supported by the National Key Technology R&D Program(2012BAI31B04) the Open Project Program of National Population Family Planning Key Laboratory of Contraceptives Drugs and Devices(2016KF08) the National Natural Science Foundation of China(81102385)
关键词 Vaginal administration POLOXAMER Thermosensitive hydrogel RETENTION Nonoxinol-9 阴道管理;Poloxamer;Thermosensitive hydrogel;保留;Nonoxinol-9
  • 相关文献

同被引文献17

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部