期刊文献+

DNA recognition patterns of the multi-zinc-finger protein CTCF: a mutagenesis study 被引量:2

DNA recognition patterns of the multi-zinc-finger protein CTCF: a mutagenesis study
原文传递
导出
摘要 CCCTC-binding factor(CTCF) is a zinc-finger protein, serving an important part in the genome architecture as well as some biochemical processes. Over 70,000 CTCF binding DNA sites have been detected genome-wide, and most anchors of chromatin loops are demarcated with the CTCF binding.Various protein or RNA molecules interact with DNA-bound CTCF to conduct different biological functions, and potentially the interfaces between CTCF and its cofactors can be targets for drug development. Here we identify the effective region of CTCF in DNA recognition, which defines the exposed CTCF surface feature for the interaction of cofactors. While the zinc-finger region contributes the most in DNA association, its binding affinity varies based on different DNA sequences. To investigate the effectiveness of individual zinc-fingers, the key residues are mutated to inactivate the DNA binding ability, while the finger configuration and the spacing between fingers are preserved. The strategy is proved to be successful, while clear differences are observed in the DNA binding affinities among the 11 finger mutants and the result is consistent to previous studies in general. With the help of inactivated finger mutants, we identify the ineffective fingers and the dominant effective fingers, which form distinctive patterns on different DNA targets. CCCTC-binding factor(CTCF) is a zinc-finger protein, serving an important part in the genome architecture as well as some biochemical processes. Over 70,000 CTCF binding DNA sites have been detected genome-wide, and most anchors of chromatin loops are demarcated with the CTCF binding.Various protein or RNA molecules interact with DNA-bound CTCF to conduct different biological functions, and potentially the interfaces between CTCF and its cofactors can be targets for drug development. Here we identify the effective region of CTCF in DNA recognition, which defines the exposed CTCF surface feature for the interaction of cofactors. While the zinc-finger region contributes the most in DNA association, its binding affinity varies based on different DNA sequences. To investigate the effectiveness of individual zinc-fingers, the key residues are mutated to inactivate the DNA binding ability, while the finger configuration and the spacing between fingers are preserved. The strategy is proved to be successful, while clear differences are observed in the DNA binding affinities among the 11 finger mutants and the result is consistent to previous studies in general. With the help of inactivated finger mutants, we identify the ineffective fingers and the dominant effective fingers, which form distinctive patterns on different DNA targets.
出处 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2018年第6期900-908,共9页 药学学报(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 31770804) CAMS Initiative for Innovative Medicine, China (Grant No. 2016-I2M-1–009) the IMM Basic Research Fund, China (Grant No. 2014ZD03)
关键词 CTCF ZINC-FINGER Structure INTEGRITY MUTAGENESIS DNA RECOGNITION PATTERNS CTCF Zinc-finger Structure integrity Mutagenesis DNA recognition patterns
  • 相关文献

参考文献2

二级参考文献1

共引文献11

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部