摘要
Imipenem is a carbapenem antibiotic. However, Imipenem could not be marketed owing to its instability and nephrotoxicity until cilastatin, an inhibitor of renal dehydropeptidase-I(DHP-I),was developed. In present study, the potential roles of renal organic anion transporters(OATs) in alleviating the nephrotoxicity of imipenem by cilastatin were investigated in vitro and in rabbits. Our results indicated that imipenem and cilastatin were substrates of h OAT1 and h OAT3. Cilastatin inhibited h OAT1/3-mediated transport of imipenem with IC50 values comparable to the clinical concentration, suggesting the potential to cause a clinical drug–drug interaction(DDI). Moreover,imipenem exhibited h OAT1/3-dependent cytotoxicity, which was alleviated by cilastatin and probenecid. Furthermore, cilastatin and probenecid ameliorated imipenem-induced rabbit acute kidney injury, and reduced the renal secretion of imipenem. Cilastatin and probenecid inhibited intracellular accumulation of imipenem and sequentially decreased the nephrocyte toxicity in rabbit primary proximal tubule cells. Renal OATs, besides DHP-I, was also the target of interaction between imipenem and cilastatin, and contributed to the nephrotoxicity of imipenem. This therefore gives in part the explanation about the mechanism by which cilastatin protected against imipenem-induced nephrotoxicity. Thus, OATs can potentially be used as a therapeutic target to avoid the renal adverse reaction of imipenem in clinic.
Imipenem is a carbapenem antibiotic. However, Imipenem could not be marketed owing to its instability and nephrotoxicity until cilastatin, an inhibitor of renal dehydropeptidase-I(DHP-I),was developed. In present study, the potential roles of renal organic anion transporters(OATs) in alleviating the nephrotoxicity of imipenem by cilastatin were investigated in vitro and in rabbits. Our results indicated that imipenem and cilastatin were substrates of h OAT1 and h OAT3. Cilastatin inhibited h OAT1/3-mediated transport of imipenem with IC50 values comparable to the clinical concentration, suggesting the potential to cause a clinical drug–drug interaction(DDI). Moreover,imipenem exhibited h OAT1/3-dependent cytotoxicity, which was alleviated by cilastatin and probenecid. Furthermore, cilastatin and probenecid ameliorated imipenem-induced rabbit acute kidney injury, and reduced the renal secretion of imipenem. Cilastatin and probenecid inhibited intracellular accumulation of imipenem and sequentially decreased the nephrocyte toxicity in rabbit primary proximal tubule cells. Renal OATs, besides DHP-I, was also the target of interaction between imipenem and cilastatin, and contributed to the nephrotoxicity of imipenem. This therefore gives in part the explanation about the mechanism by which cilastatin protected against imipenem-induced nephrotoxicity. Thus, OATs can potentially be used as a therapeutic target to avoid the renal adverse reaction of imipenem in clinic.
基金
supported by a grant from the National Natural Science Foundation of China,China(Nos.81874324,81473280,and U1608283)
Dalian Science and technology innovation found,China(No.2018J12SN065)