摘要
随着医疗水平的提高和信息化技术的不断完善,各类医药数据迅速累积,深度学习在图像识别、语音识别、自然语言处理等方面的卓越表现为医药大数据的利用带来新的思路。简介深度学习常见网络结构,综述其在医学图像、电子病历和基因组学等3个方面的最新研究进展,分析并总结深度学习在医药大数据中所面临的挑战,为深度学习在医药大数据中的应用提供参考。
With advanced level of medical care and constant improvement of information technology,various medical data are rapidly accumulating.The outstanding performance of deep learning in image recognition,speech recognition and natural language processing brings new ideas for utilizing medical big data.This paper introduced the regular network structures of deep learning,reviewed the latest research progresses of deep learning in medical images,electronic medical records and genomics,and analyzed the challenges of applying deep learning in medical big data,so as to give references for applying deep learning methods in medical big data.
作者
赵霞
陈瑶
郑晓南
廖俊
ZHAO Xia;CHEN Yao;ZHENG Xiaonan;LIAO Jun(Adverse Drug Reaction Monitoring Center of Wuxi of Jiangsu Province,Wuxi 214028,China;College of Science,China Pharmaceutical University,Nanjing 211198,China;Editorial Department of Periodicals,China Pharmaceutical University,Nanjing 210009,China)
出处
《药学进展》
CAS
2019年第1期64-69,共6页
Progress in Pharmaceutical Sciences
基金
双一流创新团队生物医药大数据与人工智能(CPU2018GY19)
江苏省食品药品监督管理局2017-2018年度科研项目(No.20170308)
关键词
医药大数据
深度学习
医学图像
电子病历
基因组学
medical big data
deep learning
medical image
electronic medical record
genomics