摘要
利用患者相似性筛选不同规模的研究队列,分别建立基于Logistic回归、决策树和BP神经网络的糖尿病个性化及非个性化预测模型,探讨基于患者相似性的个性化与非个性化疾病预测模型性能差异,以及基于不同机器学习算法的个性化预测模型性能差异。
By making use of patient similarity,the paper screens study cohort of various sizes,establishes personalized and non-personalized diabetes prediction models based on Logistics Regression(LR),Decision Tree(DT)and Back Propagation(BP)neural network,discusses the difference between the peifonnances of the personalized disease prediction model and the non-personalized one based on patient similarity,as well as the difference between the performances of personalized prediction models based on different machine learning algorithms.
作者
黄艳群
王妮
张慧
刘红蕾
陈卉
魏岚
费晓璐
HUANG Yanqun;WANG Ni;ZHANG Hui;LiU Honglei;CHEN Hui;WEI Lan;FEi Xiaolu(School of Biomedical Engineering,Capital Medical Universityy Beijing 100069,China;Beijing Key Labordtory of Fundamental Research on Biomechanics in Clinical Application,Capital Medical University,Beijing l00069,China;Xuanwu Hospital,Capital Medical University,Beijing 100053,China)
出处
《医学信息学杂志》
CAS
2019年第1期54-58,共5页
Journal of Medical Informatics
基金
国家自然科学基金项目"面向跨领域异构数据的患者相似性学习方法及应用"(项目编号:81671786)
关键词
患者相似性
个性化预测模型
糖尿病
patient similarity
personalized prediction model
diabetes