摘要
介绍集成学习预测方法,阐述集成学习在血糖预测中的应用,基于个体常规体检数据,使用集成学习的方法,融合线性回归、梯度提升决策树、随机森林等模型对血糖进行预测,实验结果表明该方法对血糖具有更高的预测精度并能更准确地识别血糖异常个体。
The paper introduces the ensemble learning prediction method and dilates on the application of ensemble learning in blood glucose prediction.Based on individual routine physical examination data,it predicts blood glucose through the ensemble learning method that is combined with linear regression,gradient boosted decision tree,random forest and other models.The experimental results indicate that the method boasts higher prediction precision for blood glucose and is able to identify individuals with abnormal blood glucose more accurately.
作者
王荣政
廖贤艺
陈湘萍
周凡
周毅
WANG Rongzheng;LIAO Xianyi;CHEN Xiangping;ZHOU Fan;ZHOU Yi(School of Computer and Data Science,Sun Yat-sen University,Guangzhou 510006;School of Biomedical Engineering,Sun Yat-sen University,Guangzhou 510080,China)
出处
《医学信息学杂志》
CAS
2019年第1期59-62,84,共5页
Journal of Medical Informatics
关键词
血糖预测
糖尿病
集成学习
blood glucose prediction
diabetes
ensemble learning