期刊文献+

基于中文病例报告文献的医学诊疗命名实体识别研究 被引量:2

Study of Named Entity Recognition in Medical Treatment Based on Literatures of Chinese Case Reports
下载PDF
导出
摘要 基于公开发表的中文病例报告文献构建医学诊疗实体语料库,搭建语料标注审核平台,以基于上下文语义理解的方式识别疾病、症状、检查、治疗4类医学诊疗实体。通过构建字符、词边界、上下文、词性和词典等特征,基于条件随机场模型提出一种多特征融合的中文病例报告诊疗命名实体识别方法,具有较高的识别准确率。 Published literatures of Chinese case reports is used to build the medical treatment entity corpus and the auditing platform of corpus tagging to identify 4 medical treatment entities of diseases,symptoms,examinations and treatments in line with the semantic understanding of the context.A multi-feature named entity recognition approach for Chinese case reports is put forward based on the conditional random fields model through establishing features of characters,word boundary,contexts,and dictionaries.This approach is of higher recognition accuracy.
作者 夏光辉 李军莲 邢宝坤 崔胜男 XIA Guanghui;LI Junlian;XING Baokun;CUI Shengnan(Institute of Medical Information,Chinese Academy of Medical Sciences,Beijng 100020,China;Peking Union Medical College Hospital,Chinese Academy of Medical Science&Peking Union Medical College,Beijing 100730,China)
出处 《医学信息学杂志》 CAS 2019年第6期54-59,共6页 Journal of Medical Informatics
基金 国家科技图书文献中心“下一代国家科技创新知识服务开放系统”先期研发任务课题“文本知识对象语义标注研究”(项目编号:XQYF0201) 中国医学科学院医学与健康科技创新工程重大协同创新项目“生物医学科技信息支撑平台”(项目编号:2016-I2M-2-005)
关键词 中文病例报告 医学诊疗 命名实体识别 条件随机场 Chinese case report medical treatment Named Entity Recognition(NER) Conditional Random Field(CRF)
  • 相关文献

参考文献11

二级参考文献57

  • 1王昀,苑春法.基于转换的时间-事件关系映射[J].中文信息学报,2004,18(4):23-30. 被引量:19
  • 2柯彼德.试论汉语语素的分类[J].世界汉语教学,1992,6(1):1-12. 被引量:5
  • 3中华人民共和国卫生部.电子病历基本规范(试行)http://www.mob.gov.cn/publimohyzs/s3585/201003/46174.htm:国家卫生计生委统计信息中心,2010.
  • 4Wasserman R C. Electronic medical records (EMRs), epidemiology, and epistemology: reflections on EMRs and future pediatric clinical research. Academic Pediatrics, 2011,11 (4) :280-287.
  • 5Pestian J P, Brew C, Matykiewicz P, et al. A shared task involving multi-label classification of clinical free text. In: Proceedings of the Workshop on BioNLP 2007: Biologi- cal, Translational, and Clinical Language Processing, Stroudsburg, USA, 2007. 97-104.
  • 6Voorhees E, Tong R. Overview of the TREC 2011 medi- cal records track. In: Proceedings of the 20th Text RE- trieval Conference Proceedings, Montgomery, USA, 2011.
  • 7Hersh W R, Voorhees E M. Overview of the TREC 2012 medical records track. In: Proceedings of the 21st Text REtrieval Conference Proceedings, Montgomery, USA, 2012.
  • 8Xia F, Yetisgen-Yildiz M. Clinical corpus annotation: challenges and strategies. In: Proceedings of the Third Workshop on Building and Evaluating Resources for Bio- medical Text Mining (BioTxtM2012) in conjunction with the International Conference on Language Resources and Evaluation (LREC), Istanbul, Turkey, 2012.
  • 9Uzuner O, Solti I, Xia F, et al. Community annotation experiment for ground truth generation for the i2b2 medi- cation challenge. Journal of the American Medical lnfor- matics Association, 2010, 17(5): 519-523.
  • 10Uzuner O, South B R, Shen S D S. 2010 i2b2 / VA challenge on concepts , assertions , and relations in clini- cal text. Journal of the American MedicaE lnformatics As- sociation, 2011,18(5) :552-557.

共引文献197

同被引文献18

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部