期刊文献+

Nitric oxide(NO) decomposition on catalysts, containing oxides of lanthanum and cerium, supported on γ-alumina

Nitric oxide(NO) decomposition on catalysts, containing oxides of lanthanum and cerium, supported on γ-alumina
原文传递
导出
摘要 The present work was devoted to study the catalytic activity of lanthanum and cerium oxides separately,deposited on g-alumina in the reaction of decomposition of nitric oxide. The catalyst samples were prepared by the method of impregnation of g-Al_2 O_3 using solutions, containing nitrates of lanthanum and cerium. The prepared samples were calcined for 4 h at temperature 650℃ in an oven in air atmosphere. The catalysts were characterized by: chemical analysis by inductively coupled plasma atomic emission spectrometry(ICP-AES), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM) combined with energy-dispersive X-ray spectroscopy(EDS), electron paramagnetic resonance(EPR) and infrared(IR) spectroscopy, as well as measurement of the specific surface area. The results show that the catalysts based on lanthanum oxide and cerium oxide deposited on alumina display high catalytic activity over 60% conversion degree with respect to decomposition of nitric oxide in the absence of reducing agent. In the presence of reducer the activity reaches 90% conversion degree. The present work was devoted to study the catalytic activity of lanthanum and cerium oxides separately,deposited on g-alumina in the reaction of decomposition of nitric oxide. The catalyst samples were prepared by the method of impregnation of g-Al_2 O_3 using solutions, containing nitrates of lanthanum and cerium. The prepared samples were calcined for 4 h at temperature 650℃ in an oven in air atmosphere. The catalysts were characterized by: chemical analysis by inductively coupled plasma atomic emission spectrometry(ICP-AES), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM) combined with energy-dispersive X-ray spectroscopy(EDS), electron paramagnetic resonance(EPR) and infrared(IR) spectroscopy, as well as measurement of the specific surface area. The results show that the catalysts based on lanthanum oxide and cerium oxide deposited on alumina display high catalytic activity over 60% conversion degree with respect to decomposition of nitric oxide in the absence of reducing agent. In the presence of reducer the activity reaches 90% conversion degree.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2019年第2期151-159,共9页 稀土学报(英文版)
关键词 Rare earths Catalysts Catalytic activity DECOMPOSITION of NITRIC oxide Rare earths Catalysts Catalytic activity Decomposition of nitric oxide
  • 相关文献

参考文献3

二级参考文献6

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部