摘要
In order to achieve deeper understanding of rare earth elements(REEs) behaviors during phosphate rock processing with H_3PO_4. The solubility of REEs in Ca(H_2PO_4)_2-H_3PO_4 solutions with various concentrations of Ca(H_2PO_4)_2 at different temperatures were tested. The results demonstrate that REEs solubility decreases sharply with the increasing concentration of Ca(H_2PO_4)_2. Equations between [REE^(3+)] and [H^+],[H^+] and [Ca^(2+)] in Ca(H_2PO_4)_2-H_3PO_4 solutions were built based on the precipitation-dissolution equilibrium of rare earth phosphates and the ionization equilibrium of H_3PO_4. According to the equations, the decreasing mechanism of REEs solubility caused by elevated concentration of Ca(H_2PO_4)_2 was determined. The mechanism can be illustrated as that the elevated concentration of [H_2 PO_4^-] decreases the concentration of hydrogen ion by retarding the ionization process of H_3PO_4 and directly promotes the precipitation of rare earth phosphates. Furthermore, it can be easy deduced that similar effect would be caused by the other cation impurities(Fe^(3+), Al^(3+), etc.) on REEs solubility based on the mechanism. In addition, superimposed reduction effect on REEs solubility caused by the elevated concentration of Ca(H_2PO_4)_2 and the elevated temperature is found. This superimposed effect leads to a super low solubility of REEs in Ca(H_2PO_4)_2-H_3PO_4 solution. On the basis of the experimental study, outlooks and suggestions for further development of REEs recovery method are given.
In order to achieve deeper understanding of rare earth elements(REEs) behaviors during phosphate rock processing with H_3PO_4. The solubility of REEs in Ca(H_2PO_4)_2-H_3PO_4 solutions with various concentrations of Ca(H_2PO_4)_2 at different temperatures were tested. The results demonstrate that REEs solubility decreases sharply with the increasing concentration of Ca(H_2PO_4)_2. Equations between [REE^(3+)] and [H^+],[H^+] and [Ca^(2+)] in Ca(H_2PO_4)_2-H_3PO_4 solutions were built based on the precipitation-dissolution equilibrium of rare earth phosphates and the ionization equilibrium of H_3PO_4. According to the equations, the decreasing mechanism of REEs solubility caused by elevated concentration of Ca(H_2PO_4)_2 was determined. The mechanism can be illustrated as that the elevated concentration of [H_2 PO_4^-] decreases the concentration of hydrogen ion by retarding the ionization process of H_3PO_4 and directly promotes the precipitation of rare earth phosphates. Furthermore, it can be easy deduced that similar effect would be caused by the other cation impurities(Fe^(3+), Al^(3+), etc.) on REEs solubility based on the mechanism. In addition, superimposed reduction effect on REEs solubility caused by the elevated concentration of Ca(H_2PO_4)_2 and the elevated temperature is found. This superimposed effect leads to a super low solubility of REEs in Ca(H_2PO_4)_2-H_3PO_4 solution. On the basis of the experimental study, outlooks and suggestions for further development of REEs recovery method are given.
基金
Project supported by National Natural Science Foundation of China(51674036)
Beijing Nova Program(Z161100004916108)