期刊文献+

Rational design of monovalent ions (Li,Na,K) co-doped ZnAl2O4:Eu3+ nanocrystals enabling versatile robust latent fingerprint visualization 被引量:3

Rational design of monovalent ions (Li,Na,K) co-doped ZnAl2O4:Eu3+ nanocrystals enabling versatile robust latent fingerprint visualization
原文传递
导出
摘要 Alkali metal ions(M+ = Na+,Li+,K+) co-doped ZnAl2O4:Eu3+(5 mol%)(ZAE) nanopowders(NPs) were prepared via solution combustion route using Mimosa pudica(MP) leaves extract as a fuel. PXRD results of co-doped samples enhance the crystallinity and grain growth. Photoluminescence(PL) of the prepared ZAE and ZAE:M+(M+ = Na+, Li+, K+) NPs shows intense emission peaks in the range of 550-750 nm and ascribed to 5D0→7FJ(J=0-4) transitions of Eu3+ ions, respectively. A 2-fold enhancement in PL intensity was observed in Li+ co-doped samples. The optimized ZnAl2O4:Eu3+(5 mol%), Li+(1 wt%)(ZAEL)NPs were used to visualize LFPs on various porous, semi-porous and non-porous surfaces through robust powder dusting technique. The visualized latent fingerprints(LFPs) reveal well defined level 1-3 ridge characteristics under several tests such as fingerprint aging and fresh water treatment for various time durations. The obtained results clearly evidence that the prepared NPs are quite useful for multifunctional applications such as advanced forensic and solid state lightning. Alkali metal ions(M+ = Na+,Li+,K+) co-doped ZnAl2O4:Eu3+(5 mol%)(ZAE) nanopowders(NPs) were prepared via solution combustion route using Mimosa pudica(MP) leaves extract as a fuel. PXRD results of co-doped samples enhance the crystallinity and grain growth. Photoluminescence(PL) of the prepared ZAE and ZAE:M+(M+ = Na+, Li+, K+) NPs shows intense emission peaks in the range of 550-750 nm and ascribed to 5D0→7FJ(J=0-4) transitions of Eu3+ ions, respectively. A 2-fold enhancement in PL intensity was observed in Li+ co-doped samples. The optimized ZnAl2O4:Eu3+(5 mol%), Li+(1 wt%)(ZAEL)NPs were used to visualize LFPs on various porous, semi-porous and non-porous surfaces through robust powder dusting technique. The visualized latent fingerprints(LFPs) reveal well defined level 1-3 ridge characteristics under several tests such as fingerprint aging and fresh water treatment for various time durations. The obtained results clearly evidence that the prepared NPs are quite useful for multifunctional applications such as advanced forensic and solid state lightning.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2019年第7期699-705,共7页 稀土学报(英文版)
基金 Project supported by the Vision Group of Science and Technology(VGST) Karnataka(VGST/KFIST L-1/2016-17/GRD-489)
关键词 Photoluminescence LATENT FINGERPRINTS Solid state lightning Alkali metal IONS Rare earths Photoluminescence Latent fingerprints Solid state lightning Alkali metal ions Rare earths
  • 相关文献

参考文献3

二级参考文献2

共引文献11

同被引文献22

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部