期刊文献+

动态增强MRI在卵巢良恶性肿瘤鉴别中的价值 被引量:9

Application of dynamic contrast-enhanced MRI in differentiating malignant from benign ovarian tumors
下载PDF
导出
摘要 目的:探讨动态增强MRI(dynamic contrast-enhanced MRI,DCE-MRI)对卵巢良恶性肿瘤的诊断和鉴别诊断价值。方法:回顾性分析经手术和病理证实、含有实质成分的86例卵巢良恶性肿瘤(良性15个、恶性71个)的DCE-MRI资料。评价标准包括时间-强度曲线(time-intensity curve,TIC)类型(分为Ⅰ、Ⅱ、Ⅲ型)和3项半定量参数:增强幅度(enhancement amplitude,EA)、最大斜率(maximal slope,MS)及达峰值一半时间(time of half rising,THR),比较良恶性肿瘤的差异。结果:恶性肿瘤中,TICⅢ型59例(83%)、Ⅱ型12例(17%),未见Ⅰ型;良性肿瘤中,TICⅠ型5例(33%)、Ⅱ型10例(67%),未见Ⅲ型;TIC类型在良恶性肿瘤中差异有统计学意义(P<0.001)。恶性肿瘤的平均EA及MS值均大于良性肿瘤[(267.4±86.2)vs.(220.2±90.5),(11.0±6.3)vs.(6.1±4.7),P值分别为0.05和<0.001],而THR值则低于良性肿瘤[(32.8±7.6)s vs.(55.5±15.4)s,P<0.001)]。THR值是诊断效能最高的指标,受试者工作特性曲线的曲线下面积为89%。当THR<45 s时,诊断灵敏度、特异度、准确率、阳性和阴性预测值分别为94%、80%、92%、96%和75%。结论:DCE-MRI的TIC类型及其3个半定量参数有助于卵巢良恶性肿瘤的鉴别。 Objective: To investigate the value of dynamic contrast-enhanced MRI(DCE-MRI) in the differential diagnosis of ovarian malignant and benign tumors. Methods: DCE-MRI data of 86 ovarian tumors with solid compositions(benign 15, malignant 71) confirmed by surgery and pathology were retrospectively analyzed. The patterns(Ⅰ, Ⅱ and Ⅲ) of time-intensity curve(TIC) and three semi-quantitative parameters including enhancement amplitude(EA), maximal slope(MS) and time of half rising(THR) were evaluated and compared between ovarian benign and malignant tumors. Results: Among malignant ovarian tumors, 59(83%) were type Ⅲ, 12(17%) were type Ⅱ, and no type Ⅰ. Among benign ovarian tumors, 5(33%) were typeⅠ, 10(67%) were type II, and no type Ⅲ. There was significant difference in TIC pattern between benign and malignant tumors(P<0.001). The mean values of EA and MS in malignant ovarian tumors were significantly higher than those in benign tumors [(267.4±86.2) vs.(220.2±90.5),(11.0±6.3) vs.(6.1±4.7); P=0.05 and P<0.001, respectively]. Whereas the mean value of THR in malignant tumors was significantly lower than that in benign tumors [(32.8±7.6) s vs.(55.5±15.4) s; P<0.001]. THR was the best diagnostic indicator among three semiquantitative parameters, and the area under the receiver operating characteristic(ROC) curve was 89%. When the cutoff value of THR was 45 s, the sensitivity, specificity, accuracy, positive and negative predictive values were 94%, 80%, 92%, 96% and 75%, respectively. Conclusion: TIC patterns and semi-quantitative parameters of DCE-MRI are helpful in distinguishing malignant from benign ovarian tumors.
出处 《肿瘤影像学》 2016年第1期66-70,共5页 Oncoradiology
基金 国家自然科学基金项目(No:81471628) 上海市医学重点建设专科项目(No:ZK2015A05) 上海市科委医学引导项目(No:124119a3300) 上海市卫生系统先进适宜技术推广项目(No:2013SY075)
关键词 卵巢肿瘤 磁共振成像 动态增强 鉴别诊断 Ovarian neoplasm Magnetic resonance imaging Dynamic contrast enhancement Differential diagnosis
  • 相关文献

参考文献14

  • 1Thomassin-Naggara Isabelle,Dara? Emile,Cuenod Charles A,Rouzier Roman,Callard Patrice,Bazot Marc.Dynamic contrast-enhanced magnetic resonance imaging: a useful tool for characterizing ovarian epithelial tumors. Journal of magnetic resonance imaging : JMRI . 2008
  • 2单军,徐坚民,龚静山,王晓玫,徐宏里,冯晓凤.早期增强MRI对良恶性卵巢肿瘤的鉴别诊断价值[J].中华放射学杂志,2003,37(11):1001-1006. 被引量:41
  • 3Carmeliet P.VEGF as a key mediator of angiogenesis in cancer. Oncology . 2005
  • 4J. Ren,Y. Huan,H. Wang,Y.-J. Chang,H.-T. Zhao,Y.-L. Ge,Y. Liu,Y. Yang.Dynamic contrast-enhanced MRI of benign prostatic hyperplasia and prostatic carcinoma: correlation with angiogenesis[J]. Clinical Radiology . 2007 (2)
  • 5KURMAN R J,CARCANGIU M L,HERRINGTON C S,et al.WHO classification of tumors of female reproductive organs. . 2014
  • 6Thomassin-Naggara Isabelle,Bazot Marc,Dara? Emile,Callard Patrice,Thomassin Jeanne,Cuenod Charles A.Epithelial ovarian tumors: value of dynamic contrast-enhanced MR imaging and correlation with tumor angiogenesis. Radiology . 2008
  • 7Li X,Hu JL,Zhu LM,et al.The clinical value of dynamic contrast-enhanced MRI in differential diagnosis of malignant and benign ovarian lesions. Tumour Biology . 2015
  • 8Tobias Franiel,Bernd Hamm,Hedvig Hricak.Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. European Radiology . 2011
  • 9李海明.动态增强MRI在卵巢肿瘤中的研究进展[J].放射学实践,2013,28(9):987-989. 被引量:9
  • 10何东峰,马大庆,靳二虎.动态增强MRI在鉴别乳腺良、恶性肿瘤和提示恶性肿瘤病理分级中的作用[J].中华放射学杂志,2012,46(12):1075-1078. 被引量:18

二级参考文献14

  • 1单军,徐坚民,龚静山,王晓玫,徐宏里,冯晓凤.早期增强MRI对良恶性卵巢肿瘤的鉴别诊断价值[J].中华放射学杂志,2003,37(11):1001-1006. 被引量:41
  • 2万卫平,施增儒,刘光华,刘仕远,肖湘生.Gd-DTPA在诊断卵巢肿块中的应用及评价[J].中华放射学杂志,1997,31(1):30-34. 被引量:6
  • 3Gralow JR, Burstein H J, Wood W, et al. Preoperative therapy in invasive breast cancer: pathologic assessment and systemic therapy issues in operable disease. J Clin Oncol, 2008, 26:814-819.
  • 4Sinha S, Sinha U. Recent advances in breast MRI and MRS. NMR Biomed, 2009, 22:3-16.
  • 5Taneja S, Jena A, Zaidi SM, et al. MRI evaluation of the contralateral breast in patients with recently diagnosed breast cancer. Indian J Radiol Imaging,2012,22:69-73.
  • 6El Khouli RH, Macura KJ, Kamel IR, et al. 3-T dynamic contrast-enhanced MRI of the breast: pharmacokinetic parameters versus conventional kinetic curve analysis. AJR, 2011, 197: 1498-1505.
  • 7Szabo BK, Aspelin P, Kristoffersen Wiberg M, et al. Invasive breast cancer: correlation of dynamic MR features with prognostic factors. Eur Radiol, 2003, 13:2425-2435.
  • 8Takeda Y, Yoshikawa K. Contrast-enhanced dynamic MR imaging parameters and histological types of invasive ductal carcinoma of breast. Biomed Pharmacother, 2005, 59 : 115-121.
  • 9Nunes LW, Schnall MD, Orel SG, et al. Breast MR imaging: interpretation model. Radiology, 1997, 202:833-841.
  • 10Schnall MD, Rosten S, Englander S, et al. A combined architectural and kinetic interpretation model for breast MR images. Acad Radiol, 2001, 8:591-597.

共引文献68

同被引文献55

引证文献9

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部