期刊文献+

基于数值模拟的有限翼展吹气控制研究 被引量:1

Numerical simulation of blowing control based on limited wingspan model
下载PDF
导出
摘要 以大攻角下增加升力、减小阻力为目的,采用计算流体力学方法,针对在有限展长的三维机翼模型上进行的局部开口吹气控制进行了数值研究。利用结构网格及相应的非定常流计算方法对吹气流动控制进行了数值仿真,分析了吹气动量系数、吹气位置等参数(重点研究吹气口展向位置)对气动特性的影响。研究表明:应用吹气技术可获得较好的气动特性,且能延迟边界层的分离;当吹气动量系数为0.000216且吹气口位于0.2c~0.205c时,二维模型升力系数增加8.2%,阻力系数减小17.2%;当开口长度是有限三维模型翼展的1/5、吹气动量系数为0.003,并在z为2.1~2.4m处引入吹气控制时,三维模型的升力系数增加22.6%,升阻比增加9.5%;对于本文的三维有限翼展机翼模型,当吹气口位于z为2.1~2.4m时可以获得最好的控制效果。 In this paper, active control technologies are studied to increase the lift and reduce the resistance at high angles of attack by means of computational fluid dynamics. Some numerical simulations on blowing control have been promoted by structured grid, unsteady calculation methods and 3D wing model with local blowing. It is also analyzed how the blowing parameters and locations would affect the aerodynamic characteristics, especially on the spanwise position effect to the aerodynamic characteristics. The research results show that blowing can obtain better aerodynamic characteristic and delay the separation of boundary layer. When the Ci=0.000216 and the chord position of blowing located on the 0.2c~0.205 c, the lift coefficient of 2D model increases by 8.2% and drag coefficient decreases by 17.2%. The lift coefficient increases by 22.6% and the lift-to-drag ratio increases by 9.5%, when the span of the blowing is one fifth of the wing when the Ci=0.003 and the spanwise position of blowing locates on the z=2.1~2.4m. The best control effect of 3D model can be achieved when the blowing control locates on the z=2.1~2.4m of the span.
出处 《应用力学学报》 CAS CSCD 北大核心 2014年第4期489-495,1,共8页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金重点项目(50830201) 中央高校基本科研业务费 江苏高校优势学科建设工程资助项目 江苏省普通高校研究生科研创新计划资助项目(CXLX12_0165)
关键词 吹气控制 结构网格 动量系数 SST K-ω blowing control,structural grid,coefficient of momentum,SST K-ω
  • 相关文献

参考文献8

二级参考文献58

  • 1钱炜祺,詹浩,白俊强,牟斌.一种基于湍流模式的转捩预测方法[J].空气动力学学报,2006,24(4):502-507. 被引量:6
  • 2彭泽琰 刘刚.航空燃气轮机原理[M].北京:国防工业出版社,2000..
  • 3Smith A M O.High lift aerodynamics[J].J Aircraft,1975,12 (6):501-530.
  • 4《飞机设计手册》总编委会.飞机设计手册第6册-气动设计[M].北京:航空工业出版社,2002.
  • 5Rumsey C L,Ying S X.Prediction of high lift:review of present CFD capability[J].Progress in Aerospace Science,2002,38(2):145-180.
  • 6Menter F R.Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA Journal,1994,32(8):1598-1605.
  • 7Angelo C,Bert G.Numerical study of the optimization of separation control[R].45th AIAA Aerospace Sciences Meeting and Exhibit,2007.
  • 8Khodadoust A,Shmilovich A.High reynolds number simulations of distributed active flow control for a high-lift system[R].25th AIAA Applied Aerodynamics Conference,2007.
  • 9Abdollah Khodadoust.Active Control of Flow Separation on a High Lift System with Slotted.Flap at High Reynolds Number.AIAA 2007-4424.
  • 10John T Solomon.High Bandwidth Micro-Actuators for Active Flow Control. AIAA 2008-3042.

共引文献74

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部