期刊文献+

各向同性与各向异性三相材料接头应力奇异性研究 被引量:1

Study of stress singularities of three-material junctions formed from isotropic and anisotropic wedges
下载PDF
导出
摘要 研究了各向同性与各向异性三相材料接头的应力奇性指数,通过引入奇异点附近区域位移场渐近展开的典型项,将各向同性与各向异性组合材料接头的控制方程和径向边界条件转化为变系数常微分方程的特征值问题;再利用插值矩阵法求解所建立的特征方程,得到接头端部的应力奇性指数和特征角函数。对由两个各向异性材料和一个各向同性材料以任意楔形角组成的三相接头结构的奇异性进行了研究,并比较了它们的应力奇性指数。计算结果表明:对于粘结接头,各向同性材料刚度越大应力奇异性越强;对于剥离接头,各向同性材料楔形角或材料刚度越大,第一阶应力奇异性越弱。计算结果与已有文献的结果对比吻合良好,证明了本文方法的有效性。 In this paper,the stress singularity order for three-material junctions formed from isotropic and anisotropic wedges are investigated.By introducing the typical terms in the asymptotic expansions of the displacement field near the singular point,the governing equations and radial boundary conditions of three-material junctions are transformed into the characteristic ordinary differential equations with varying coefficients.The singularity order and characteristic angular function of the junction are yielded by applying the interpolating matrix method to solve the established characteristic equations.Consequently,the singularities for the junctions in three-phase structure formed from two anisotropic wedges and one isotropic intermediate wedge with arbitrary angles are evaluated and their singularity orders are compared.In general,it can be seen that harder intermediate material induces stronger singularity with regard to bonded junctions,and that the first stress singularity order becomes weaker as isotropic intermediate wedge angle is larger or isotropic intermediate material is stiffer with regard to disbonded junctions.Simultaneously,the validity of the present method is confirmed by comparing with the existed results in the numerical examinations.
作者 葛仁余 熊海超 牛忠荣 程长征 Ge Renyu;Xiong Haichao;Niu Zhongrong;Cheng Changzheng(Key Laboratory for Mechanics,Anhui Polytechnic University,241000,Wuhu,China;School of Civil Engineering,Hefei University of Technology,230009,Hefei,China)
出处 《应用力学学报》 CAS CSCD 北大核心 2019年第4期825-831,995-996,共8页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(11772114) 安徽省自然科学资金(1808085ME147)
关键词 插值矩阵法 应力奇异性 三相材料接头 渐近展开 interpolating matrix method stress singularity three-material junctions asymptotic expansion
  • 相关文献

参考文献3

二级参考文献17

  • 1Xu, YJ,Yuan, S.COMPLETE EIGEN-SOLUTIONS FOR ANTI-PLANE NOTCHES WITH MULTI-MATERIALS BY SUPER-INVERSE ITERATION[J].Acta Mechanica Solida Sinica,1997,10(2):157-166. 被引量:1
  • 2牛忠荣.多点边值问题的插值矩阵法及误差分析[J].计算物理,1993,10(3):336-344. 被引量:19
  • 3Williams M L. The stress around a fault or crack in dissimilar media [J]. Bulletin of the Seismological Society of America, 1959, 49: 199-204.
  • 4Yamada Y, Okumura H. Finite element analysis of stress and strain singularity eigenstate in inhomogeneous media or composite materials [C]//Atluri S N, GaUagher R H, Zienkiewicz O C. Hybrid and Mixed Finite Element Methods. Chichester: Wiley, 1983: 325-343.
  • 5Pageau S S, Joseph P F, Biggers S B. Finite element analysis of anisotropic materials with singular inplane stress fields [J]. International Journal of Solids and Structures, 1995, 32: 571-591.
  • 6Pageau S S, Biggers S B. A finite element approach to three-dimensional singular stress states in anisotropic multi-material wedges and junctions [J]. International Journal of Solids and Structures, 1996, 33: 33-47.
  • 7Yosibash Z, Szabo B A. Numerical analysis of singulari-ties in two-dimensions part 1: computation of eigenpairs [J]. International Journal for Numerical Methods in Engineering, 1995, 38:2055-2082.
  • 8Gu L, Belytschko T. A numerical study of stress singu-larities in a two-material wedge [J]. International Journal for Numerical Methods in Engineering, 1994, 31: 865-889.
  • 9Zienkiewicz O C, Taylor R L. The finite element method 5th ed Vol. 1 The basic [M]. Oxford: Butterworth -Heinemann, 2000.
  • 10Kanninen M F, Popelar C H. Advanced fracture Mecha-nics [M]. New York: Oxford University Press, 1985,

共引文献22

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部