期刊文献+

腾格里沙漠草方格固沙林土壤颗粒组成、分形维数及其对土壤性质的影响 被引量:37

Soil particle composition,fractal dimension and their effects on soil properties following sand-binding revegetation within straw checkerboard in Tengger Desert,China
原文传递
导出
摘要 为了明确草方格人工固沙造林植被恢复过程中土壤颗粒组成、分形维数及对土壤理化性质的影响,以腾格里沙漠东南缘2016年(1 a)、2013年(4 a)和1987年(30 a)草方格固沙林为研究样地,以周围流动沙地为对照(CK),研究了草方格固沙造林后植被恢复过程中土壤颗粒组成、分形维数及与土壤理化性质的作用关系.结果表明:100~250、250~500μm土壤颗粒含量较高,分别为42.5%~80.1%、12.5%~42.2%; 50~100μm土壤颗粒含量居中,为0.2%~20.8%;<2和2~50μm的土壤颗粒含量次之,分别在0~1. 3%和0~22. 7%;而500~1000μm的土壤颗粒含量较低,在0.3%以下.<2和2~50μm土壤颗粒仅在30 a固沙林有分布; 50~100μm土壤颗粒分布为30 a最高,4 a和1 a居中,而CK最低; 100~250μm土壤颗粒分布依次为4 a>1 a>CK>30 a; 250~500μm土壤颗粒分布为CK>1 a>4 a>30 a;但500~1000μm土壤颗粒在各样地分布均较少,且不同样地之间无显著差异.研究区土壤颗粒分形维数为0.54~2.59,并且不同样地间存在显著差异,表现为30 a最高,4 a与1 a居中,而CK最低.土壤颗粒分形维数与土壤黏粒、粉粒、极细砂粒含量呈极显著正相关,而与土壤中砂粒呈极显著负相关.土壤颗粒分形维数与土壤电导率、有机碳、全氮和碳氮比均呈极显著正相关,而与土壤p H和含水量无相关性.土壤中<2、2~50、50~100μm颗粒与土壤电导率、有机碳、全氮和碳氮比均呈极显著正相关,而250~500μm土壤颗粒与上述4个土壤指标和土壤含水量呈显著负相关.500~1000μm土壤颗粒与土壤含水量亦呈极显著负相关.在腾格里沙漠东南缘地区利用草方格进行人工固沙植被建设,可有效促进土壤颗粒细粒化,长期演变导致土壤黏粒和粉粒及土壤分形维数显著增加,促使土壤有机碳和全氮含量提高,有利于土壤理化性质改善和促进沙漠化治理. This study aims to elucidate the effects of soil particle composition and fractal dimension on soil physical and chemical properties following sand-binding revegetation within straw checkerboard in south-eastern Tengger Desert. Three afforested plantations in the year of 2016( i. e.,1year),2013( i.e.,4 years) and 1987( i.e.,30 years) were selected as study sites,with the adjacent mobile sand land as control( CK). We measured soil particle composition,soil fractal dimension,and the changes of soil physical and chemical properties. The relationship between soil particle composition,soil fractal dimension,and soil properties was analyzed. The results showed that contents of soil particle with the size of both 100-250 μm and 250-500 μm were greater than that of 50-100 μm,ranging from 42.5% to 80.1% and from 12.5% to 42.2% relative to that ranging from 0.2% to 20.8%. Contents of soil particle with the size of <2 μm and 2-50 μm were remarkably lower than that of 100-250 μm,250-500 μm and 50-100 μm,ranging from 0 to 1.3% and from 0 to 22.7%,respectively. However,contents of soil particle at the size of 500-1000 μm was the lowest occupying <0.3% of soil particle composition. Soil particle with the size of < 2 μm and2-50 μm were found in the 30-year sites only. Soil particle distribution at the size of 50-100 μm,100-250 μm,and 250-500 μm followed the order of 30 a>1 a>4 a>CK,4 a>1 a>CK>30 a,and CK>1 a>4 a> 30 a,respectively. Soil particle with the size of 500-1000 μm occupied little of soil particle composition,with no significant difference between each site. The fractal dimension of soil particles ranged from 0.54 to 2.59. There was significantly greater soil fractal dimension in 30 a in comparison to 4 a,1 a and CK,with the intermediate values in 4 a and 1 a,and the lowest values in CK. There was a significantly positive correlation of fractal dimension of soil particles with soil particle content of clay,silt,very fine sand,and a significantly negative correlation of fractal dimension of soil particles with soil particle content of medium sand. Fractal dimension of soil particles was positively correlated with soil electrical conductivity,organic carbon,total nitrogen,and carbon-nitrogen ratio,but with no correlation with soil p H and soil water content. Soil particle content at the size of <2 μm,2-50 μm,and 50-100 μm had a significant positive correlation with soil electrical conductivity,organic carbon,total nitrogen,and carbon-nitrogen ratio,whereas soil particle content at the size of 250-500 μm had a negative correlation with the former four soil indices and soil water content. In addition,there was a significant negative correlation of soil particle content at the size of 500-1000 μm with soil water content. It was concluded that the sand-binding revegetation within straw checkerboard in Tengger Desert could facilitate the fine soil particles by ameliorating stressful soil conditions. Long-term succession of revegetation on mobile sand land could enhance soil clay and silt content as well as soil fractal dimension,thus be beneficial for the improvement of soil physical and chemical properties and desertification control.
作者 罗雅曦 刘任涛 张静 常海涛 LUO Ya-xi;LIU Ren-tao;ZHANG Jing;CHANG Hai-tao(College of Agriculture,Ningxia University,Yinchuan 750021,China;Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China,Ningxia University,Yinchuan 750021,China;Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwestern China of Ministry of Education,Ningxia University,Yinchuan 750021,China)
出处 《应用生态学报》 CAS CSCD 北大核心 2019年第2期525-535,共11页 Chinese Journal of Applied Ecology
基金 国家自然科学基金项目(41661054 41867005) 宁夏自然科学基金项目(2018AAC02004) 宁夏高等学校科学研究项目(NGY2018007) 自治区科技基础条件建设计划创新平台专项资金项目(2018DPC05021) 宁夏大学"生态学"西部一流学科建设项目(NXYLXK2017B06)资助~~
关键词 腾格里沙漠 造林固沙 土壤颗粒 土壤理化性质 土壤分形维数 草方格 Tengger Desert sand-binding revegetation soil particles soil physical and chemical properties soil fractal dimension straw checkerboard
  • 相关文献

参考文献3

二级参考文献57

  • 1张迎梅,包新康,虞闰六,李新荣.宁夏沙坡头荒漠生态环境鸟类季节性消长研究[J].中国沙漠,2002,22(6):541-544. 被引量:10
  • 2刘家琼,石庆辉,李玉俊.沙坡头地区人工生态系统的建立与生物类群的繁衍[J].生物多样性,1996,4(2):87-91. 被引量:3
  • 3Gleick J著(张淑誉译).混沌-开创新科学[M].上海:上海译文出版社,1990.5~16.
  • 4董年科编著.分形理论及其应用[M].沈阳:辽宁科技出版社,1991.2~19.
  • 5高安秀树著(沈步明 常子文译).分数维[M].北京:地震出版社,1989.20~42.
  • 6赵兴梁.腾格里沙漠沙坡头地区流沙治理研究[M].银川:宁夏人民出版社,1988.101-120.
  • 7肖洪浪张继贤李金贵.沙坡头流沙固定过程中肥力演变.中国沙漠,1996,16(1):64-69.
  • 8凌裕泉.铁路沙害治理体系的风沙物理学原理--以包兰铁路为例[A].中国科学院兰州沙漠研究所沙坡头沙漠科学研究站.腾格里沙漠沙坡头地区流沙治理研究(2)[C].银川: 宁夏人民出版社,1991.297-308.
  • 9中国科学院沙坡头沙漠试验研究站.中国科学院沙坡头沙漠试验研究站年报[C].兰州:甘肃科学技术出版社,1993.89-107,128-130.
  • 10段争虎刘新民.沙坡头人工植被区营养元素循环研究.中国沙漠,1996,16(1):76-79.

共引文献109

同被引文献695

引证文献37

二级引证文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部