摘要
由于卡门方程的非线性性和耦合性,使得寻求精确解的困难很大。迄今为止,除了少数未从数学上严格证明其收敛性的精确解外,大多数均采用近似方法求解。本文将卡门方程化为非线性奇异耦合的积分方程组,运用迭代法求得了连续函数序列。通过证明其一致收敛性,得到了中心受集中载荷作用的固定夹紧边界的圆板和圆底扁球壳的卡门方程的精确解的解析式及其收敛性证明。
It is extremely difficult to obtain an exact solution of von Karman's equations because the equations are nonlinear and coupled. So far many approximate methods have been used to solve the large deflection problems except that only a few exact solutions have been investigated but no strict proof on convergence is presented yet. In this paper, first of all, we reduce the von Karmari's equations to equivalent integral equations which are nonlinear, coupled and singular. Secondly the sequences of continuous function with general form are constructed using iterative technique. Based on the sequences to be uniformly convergent, we obtain analytical formula of exact solutions to von Karman's equation related to large deflection problems of circular plate and shallow spherical shell with clamped boundary subjected to a concentrated load at the centre.
出处
《应用数学和力学》
1987年第11期997-1006,共10页
Applied Mathematics and Mechanics