期刊文献+

三角函数剪切悬臂梁理论的位移边界条件

Displacement Boundary Conditions for the Trigonometric Shear Cantilever Beam Theory
下载PDF
导出
摘要 工程上经常要计算在不同载荷作用下,狭矩形截面悬臂梁的挠度。在求解过程中,需要利用边界条件来确定位移场中的待定系数。该文应用三角函数剪切变形理论,讨论5种位移边界条件:两种传统位移边界条件,最小二乘法确定的位移边界条件和两种新的位移边界条件。在3种不同载荷作用下,求得悬臂梁中面的挠度公式,将得到的结果与有限元的数值计算结果进行比较分析,得出两种新的位移边界条件比传统位移边界条件得到的结果更加精确,在保证精度的前提下,比采用最小二乘法确定的位移边界条件计算更加简单,便于工程应用。 The paper presented the analytical results aimed at studying the deformations of cantilever beams based on the trigonometric shear theory. 5 different displacement boundary conditions were investigated. The first 2 conditions were the conventional simplified displacement boundary conditions,and the3 rd was determined with the least squares method. Besides,2 newsimplified boundary conditions were given in viewof the definition of the fixed end of cantilever beams. Compared with the solutions out of the finite element method,results from the 2 newboundary conditions were found to be much better than those from the conventional ones especially for short beams. The newly presented boundary conditions are more simple and easy to be coded by engineers than the least squares method.
作者 孙振冬 高阳
出处 《应用数学和力学》 CSCD 北大核心 2015年第S1期36-43,共8页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11172319 11472299) 教育部新世纪优秀人才支持计划(NCET-13-0552)~~
关键词 悬臂梁 三角函数 最小二乘法 挠度 有限元 cantilever beam trigonometric shear theory least squares method deflection finite element
  • 相关文献

参考文献12

  • 1R.P. Shimpi,A.V. Ainapure.A beam finite element based on layerwise trigonometric shear deformation theory[J]. Composite Structures . 2001 (2)
  • 2S. P. Timoshenko.LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars[J]. Philosophical Magazine Series 6 . 1921 (245)
  • 3Michalopoulos, C.D.,Wheeler, L.T.DEFLECTION ANALYSIS OF RECTANGULAR PLATES REINFORCED BY PRETENSIONED STIFFENERS. Journal of Applied Mechanics, Transactions ASME . 1975
  • 4Timoshenko SP,Goodier JN.Theory of Elasticity. Journal of Women s Health . 1970
  • 5Timoshenko S P,Gere J M.Mechanics of Materials. Journal of Women s Health . 1972
  • 6Reddy J N.A simple higher_order theory for laminated composite plates. Journal of Applied Mechanics . 1984
  • 7Shimpi, R.P.,Ainapure, A.V.Free vibration analysis of two layered cross-ply laminated beams using layer-wise trigonometric shear deformation theory. Journal of Reinforced Plastics and Composites . 2002
  • 8Stein,Manuel.Vibration of beams and plate strips with three-dimensional flexibility. Journal of Applied Mechanics, Transactions ASME . 1989
  • 9Reddy J N.Energy and Vibrational Methods in Applied Mechanics. . 1984
  • 10Wang C M,Reddy J N,Lee K H.Shear Deformable Beams and Plates. . 2000

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部